fmdtools.define.container
Package defining system variables other base constructs.
The containers subpackage provides the elemental building puzzle pieces needed (i.e., containers for holding states, modes, etc.) to develop simulations, shown below.
Container classes in fmdtools and their inheritance.
These classes are provided in the following modules:
Defines |
|
Defines |
|
Defines |
|
Defines |
|
Defines |
|
Defines |
fmdtools.define.container.base
Defines BaseContainer
class which other containers inherit from.
- class fmdtools.define.container.base.BaseContainer
Bases:
dataobject
Base container class.
A container is a dataobject (from the recordclass library) that fulfills a specific role in a block. This class inherits from dataobject for low memory footprint and has a number of methods for making attribute assignment/copying/tracking easier.
- asdict()
Return fields as a dictionary.
- assign(obj, *fields, as_copy=True, **fielddict)
Set the same-named values of the current object to those of another.
Further arguments specify which values. e.g.,:
>>> p1 = ExContainer(x=0.0, y=0.0) >>> p2 = ExContainer(x=10.0, y=20.0) >>> p1.assign(p2, 'x', 'y') >>> p1.x 10.0 >>> p1.y 20.0
Can also be used to assign list values to a variable, e.g.,:
>>> p1.assign([3.0,4.0], 'x', 'y') >>> p1.x 3.0 >>> p1.y 4.0
Can also provide kwargs in case value names don’t match, e.g.,:
>>> p1.assign(p2, x='y', y='x') >>> p1.x 20.0 >>> p1.y 10.0
- as_copy: bool,
set to True for dicts/sets to be copied rather than referenced
- base_type()
Return fmdtools type of the model class.
- check_role(roletype, rolename)
Check that the container will be given the correct name for its class.
- The correct container-names correspond to the role for the class embody, e.g.:
State : s Rand : r Mode : m Parameter : p SimParam : sp
- copy()
Create an independent copy of the container with the same attributes.
- Returns:
cop – Copy of the container with the same attributes as self.
- Return type:
Examples
>>> ex = ExContainer(4.0, 5.0) >>> ex2 = ex.copy() >>> ex2 ExContainer(x=4.0, y=5.0)
>>> ex_nest = ExNestContainer(ex2, 40.0) >>> ex_nest.copy() ExNestContainer(e1=ExContainer(x=4.0, y=5.0), z=40.0)
- create_hist(timerange=None, track=None, default_str_size='<U20')
Create a History corresponding to the State.
- Parameters:
timerange (iterable, optional) – Time-range to initialize the history over. The default is None.
track (list/str/dict, optional) – argument specifying attributes for :func:`get_sub_include’. The default is None.
- Returns:
hist – History of fields specified in track.
- Return type:
Examples
>>> nest_hist = ExNestContainer().create_hist() >>> nest_hist e1: --x: array(1) --y: array(1) z: array(1) >>> nest_hist.e1.x [1.0]
- default_track = 'all'
- get_code(source)
Get the code defining the Container.
- get_field_dict(obj, *fields, **fielddict)
Get dict of values from object corresponding to Container fields.
- Parameters:
obj (dataobject, list, tuple, or ndarray) – Object to get field dictionary from.
*fields (str) – Names of corresponding fields (in self.__fields__)
**fielddict – Mapping of fields in obj corresponding to fields in self.
- Returns:
field_dict – Dictionary of fields and their values.
- Return type:
dict
Examples
>>> ex = ExContainer(1.0, 2.0) >>> ex.get_field_dict([5.0]) {'x': 5.0}
>>> ex2 = ExContainer(3.0, 4.0) >>> ex.get_field_dict(ex2) {'x': 3.0, 'y': 4.0}
>>> ex.get_field_dict({'x': 3.0, 'z': 40.0}, x='x', y='z') {'x': 3.0, 'y': 40.0}
>>> ex.get_field_dict(ex) {'x': 1.0, 'y': 2.0}
- get_memory()
Get approximate memory impact of dataobject and its fields.
- get_pref_attrs(prefix, space='_')
Return dict of Container attributes with ‘prefix_’ as the var name.
- get_track(track)
Get tracking params for a given dataobject (State, Mode, Rand, etc).
- Parameters:
obj (dataobject) – State/Mode/Rand. Requires .default_track class variable.
track (track) – str/tuple. Attributes to track. ‘all’ tracks all fields ‘default’ tracks fields defined in default_track for the dataobject ‘none’ tracks none of the fields
- Returns:
track – fields to track
- Return type:
tuple
- get_true_field(fieldname, *args, **kwargs)
Get the value that will be set to fieldname given *args and **kwargs.
- get_true_fields(*args, force_kwargs=False, **kwargs)
Resolve the args to pass given certain defaults, *args and **kwargs.
NOTE: must be used for pickling, since pickle passes arguments as *args and not **kwargs.
- get_typename()
Containers are typed as containers unless specified otherwise.
- init_hist_att(hist, att, timerange, track, str_size='<U20')
Initialize a field in the history.
- reset()
- return_mutables()
Return mutable aspects of the container.
- rolename = 'x'
- set_arg_type(*args, **kwargs)
Set Parameter field input to the predetermined field type.
e.g., if the input to parameter is int for a float field, this converts it to a float in initialization.
- set_field(fieldname, value, as_copy=True)
Set the field of the container to the given value.
- Parameters:
fieldname (str) – Name of the field.
value (value) – Value to set the field to.
as_copy (bool, optional) – Whether to copy value. The default is True.
Examples
>>> ex_nest = ExNestContainer() >>> ex_inside = ExContainer(3.0, 4.0) >>> ex_nest.set_field('e1', ex_inside) >>> ex_nest ExNestContainer(e1=ExContainer(x=3.0, y=4.0), z=20.0)
- to_default(*fieldnames)
Reset given fields to their default values.
Examples
>>> ex = ExContainer(3.0, 4.0) >>> ex.to_default() >>> ex ExContainer(x=1.0, y=2.0)
>>> ex = ExContainer(4.0, 5.0) >>> ex.to_default('x') >>> ex ExContainer(x=1.0, y=5.0)
- class fmdtools.define.container.base.ExContainer(x: float = 1.0, y: float = 2.0)
Bases:
BaseContainer
Create class ExContainer instance
- x: float
- y: float
- class fmdtools.define.container.base.ExNestContainer(e1: ExContainer = ExContainer(x=1.0, y=2.0), z: float = 20.0)
Bases:
BaseContainer
Create class ExNestContainer instance
- e1: ExContainer
- z: float
- fmdtools.define.container.base.check_container_pick(container, *args, **kwargs)
Check that a given container class or object will pickle.
Examples
>>> ex = ExContainer() >>> check_container_pick(ex) True >>> check_container_pick(ExContainer, x=2.0) True >>> check_container_pick(ExContainer, 5.0, 40.0) True
fmdtools.define.container.mode
The following template shows the basic syntax to use to define modes:
Mode class template/example.
Defines Mode
class for defining (faulty and otherwise) mode s.
Has classes:
Fault
: Class for defining fault parametersMode
: Class for defining the mode property (and associated probability model) held in Blocks.
- class fmdtools.define.container.mode.ExampleMode(*args, s_kwargs={}, **kwargs)
Bases:
Mode
Example mode for testing/docs.
- exclusive = True
- fault_no_charge = Fault(prob=1e-05, cost=100, phases=(('standby', 1.0),), disturbances=(), units='sim')
- fault_short = (1e-05, 100, (('supply', 1.0),))
- faults: set
- mode: str
- opermodes = ('supply', 'charge', 'standby')
- sub_faults: bool
- class fmdtools.define.container.mode.Fault(*args, failrate=1.0, **kwargs)
Bases:
BaseContainer
Stores Default Attributes for individual fault modes.
Fields
- probfloat
Mode probability or rate per operation
- costfloat
Individual mode cost (e.g., of repair)
- phasestuple
Opportunity vector mapping phases of operation to relative probability. i.e., phase_probability = Fault.prob * Fault.phases[phase] Has format (‘phasename1’, value, ‘phasename2’, value2)
- disturbancestuple
Disturbances caused by the fault to aspect(s) of the containing simulable. e.g. (‘s.x’, 1.0, ‘s.y’, 2.0)
- unitsstr
Units on probability. Can be a unit of continuous (‘sec’, ‘min’, ‘hr’, ‘day’) or discrete (‘sim’) time. Default is ‘sim’.
- calc_rate(time, phasemap={}, sim_time=1.0, sim_units='hr', weight=1.0)
Calculate the rate of a given fault mode.
- Parameters:
time (float) – Time the fault will be injected.
phasemap (PhaseMap, optional) – Map of phases/modephases that define operations the mode will be injected during (and maps to the opportunity vector phases). The default is {}.
sim_time (float, optional) – Duration of the simulation. Used to determine fault exposure time when time-units (‘sec’, ‘min’, etc) define the fault rate. The default is 1.0.
sim_units (float, optional) – Simulation time units. Used to determine fault exposure time when time-units define the fault rate. The default is ‘hr’.
weight (float, optional) – Weight for the fault/scenario (e.g., for multiple scens.). The default is 1.
- Returns:
rate – Calculated rate of the scenario with the given information.
- Return type:
float
Examples
>>> # Calculating the rate of a mode in the 'on phase': >>> from fmdtools.analyze.phases import PhaseMap >>> pm = PhaseMap({'on': [0, 5], 'off': [6, 10]}) >>> exfault = Fault(prob=0.5, phases = {'on': 0.9, 'off': 0.1}, units='hr') >>> rate = exfault.calc_rate(4, pm, sim_time=10.0, sim_units='min') >>> # note that this rate is the same as what we would calculate: >>> manual_calc = 0.5 * 6 * 0.9 / 60 >>> manual_calc == rate True >>> rate_off = exfault.calc_rate(7, pm, sim_time=10.0, sim_units='min') >>> # note that the interval for off (6-10) is 5 while (0-5) is 6 >>> manual_calc_off = 0.5 * 5 * 0.1 / 60 >>> manual_calc_off == rate_off True
- cost: float
- disturbances: tuple
- phases: tuple
- prob: float
- units: str
- class fmdtools.define.container.mode.FlexibleMode(faults: set = set(), sub_faults: bool = False, faultmodes: dict = {})
Bases:
Mode
Create class FlexibleMode instance
- faultmodes: dict
- faults: set
- fm_args = {}
- fs_args = {}
- get_all_faultnames()
Get all names of faults.
- get_fault(faultname)
Get the Fault object associated with the given faultname.
- Parameters:
faultname (str) – Name of the fault (if defined as a part of the mode at value fault_name). Can also be parameters of the fault.
- Returns:
fault – Fault container with given fields..
- Return type:
- init_faultmodes(**faults)
Initialize the self.faultmodes dictionary from the parameters of the Mode.
- Parameters:
**faults (kwargs) – Arguments to instantiate for the faultmodes. e.g., faultname=(0.1, 200).
- init_faultspace(franges, n='all', seed=42, prefix='hmode_', **kwargs)
Associate n-disturbance mode combinations as faults.
- Parameters:
franges (dict, optional) – Dictionary of form {‘varname’: {val1, val2…} of ranges of values for for each disturbance (if used to generate modes). The default is {}.
n (int, optional) – Number of faultstate combinations to sample. The default is ‘all’.
seed (int, optional) – Seed used in selection (if n!=’all). The default is 42.
prefix (str) – Prefix of fault names. Default is “hmode_”
**kwargs (kwargs) – Entries for the Fault (e.g., phases, etc)
- set_field(fieldname, value, as_copy=True)
Extend BaseContainer.assign to not set faultmodes (always the same).
- sub_faults: bool
- class fmdtools.define.container.mode.HumanErrorMode(*args, **kwargs)
Bases:
Mode
Mode for Human Errors using HEART-based model.
Overall failrate of human error determined by given:
- gtpfloat
Generic task probability
- epc_XXtuple/list
Error producing condition factors. May be specified as performance shaping factors or tuple (factor, effect proportion).
Examples
>>> class ExHMode(HumanErrorMode): ... gtp : float = 0.01 ... epc_1 : tuple = (2, 0.5) >>> exh = ExHMode() >>> exh.failrate 0.015 >>> class ExHMode2(HumanErrorMode): ... gtp : float = 0.01 ... epc_1 : float = 2.0 ... epc_2 : float = 3.0 >>> exh2 = ExHMode2() >>> exh2.failrate 0.06
- calc_he_rate()
Calculate self.failrate based on a human error probability model.
This model uses an overall generic task probability (set by self.gtp) as well as error producing conditions (EPCs) to determine the overall failure rate of the task.
- failrate: float
- faults: set
- gtp = 1.0
- sub_faults: bool
- class fmdtools.define.container.mode.Mode(*args, s_kwargs={}, **kwargs)
Bases:
BaseContainer
Class for defining the mode property (and probability model) held in Blocks.
Mode is meant to be inherited in order to define the specific faults related to a given Block.
Class Variables
- opermodestuple
Names of non-faulty operational modes.
- failratefloat
Overall failure rate for the block. The default is 1.0. Note that if a failrate is provided, the prob argument in faultparams is a conditional probability (e.g. Fault.prob = Mode.failrate * Mode.faultparams[‘mode’][‘prob’]).
- probtypestr, optional
Type of probability in the probability model, a per-time ‘rate’ or per-run ‘prob’. The default is ‘rate’.
- exclusiveTrue/False
Whether fault modes are exclusive of each other or not. Default is False (i.e. more than one can be present).
- default_xxfloat
Default values for Fault fields (e.g., prob, phases, etc)
These fields are then used in simulation and elsewhere.
Fields
- faultsset
Set of faults present (or not) at any given time
- sub_faultsbool
Whether objects contained by the object are faulty.
- modestr
Name of the current mode. the default is ‘nominal’
- faultmodesdict
Dictionary of
Fault
defining possible fault modes and their properties
Examples
>>> class ExampleMode(Mode): ... fault_no_charge = Fault(1e-5, 100, (('standby', 1.0),)) ... fault_short = (1e-5, 100, (('supply', 1.0),)) ... opermodes = ("supply", "charge", "standby") ... exclusive = True ... mode: str = "standby" >>> exm = ExampleMode() >>> exm.mode 'standby' >>> exm.any_faults() False >>> exm.get_faults() {'no_charge': Fault(prob=1e-05, cost=100, phases=(('standby', 1.0),), disturbances=(), units='sim'), 'short': Fault(prob=1e-05, cost=100, phases=(('supply', 1.0),), disturbances=(), units='sim')}
- add_fault(*faults)
Add fault (a str) to the block.
- Parameters:
*fault (str(s)) – name(s) of the fault to add to the black
- any_faults()
Check if the block has any fault modes.
- base_type()
Return fmdtools type of the model class.
- default_track = ('mode', 'faults', 'sub_faults')
- exclusive = False
- failrate = 1.0
- faults: set
- get_all_faultnames()
Get all names of faults.
- get_fault(faultname)
Get the Fault object associated with the given faultname.
- Parameters:
faultname (str) – Name of the fault (if defined as a part of the mode at value fault_name). Can also be parameters of the fault.
- Returns:
fault – Fault container with given fields..
- Return type:
- get_fault_disturbances(*faults)
Get all disturbances caused by present (or specified) faults.
- get_faults(*faults)
Get Fault objects for all associated faults.
- has_fault(*faults)
Check if the block has fault (a str).
- Parameters:
*faults (strs) – names of the fault to check.
- in_mode(*modes)
Check if the system is in a given operational mode.
- Parameters:
*modes (strs) – names of the mode to check
- init_hist_att(hist, att, timerange, track, str_size='<U20')
Add field ‘att’ to history. Accommodates faults and mode tracking.
- mode = 'nominal'
- no_fault(fault)
Check if the block does not have fault (a str).
- Parameters:
fault (str) – name of the fault to check.
- opermodes = ('nominal',)
- remove_any_faults(opermode=False, warnmessage=False)
Reset fault mode to nominal and returns to the given operational mode.
- Parameters:
opermode (str (optional)) – operational mode to return to when the fault mode is removed
warnmessage (str/False) – Warning to give when performing operation. Default is False (no warning)
- remove_fault(fault_to_remove, opermode=False, warnmessage=False)
Remove fault in the set of faults and returns to given operational mode.
- Parameters:
fault_to_replace (str) – name of the fault to remove
opermode (str (optional)) – operational mode to return to when the fault mode is removed
warnmessage (str/False) – Warning to give when performing operation. Default is False (no warning)
- replace_fault(fault_to_replace, fault_to_add)
Replace fault_to_replace with fault_to_add in the set of faults.
- Parameters:
fault_to_replace (str) – name of the fault to replace
fault_to_add (str) – name of the fault to add in its place
- return_mutables()
Return mutable aspects of the container.
- rolename = 'm'
- set_mode(mode)
Set a mode in the block.
- Parameters:
mode (str) – name of the mode to enter.
- sub_faults: bool
- to_fault(fault)
Move from the current fault mode to a new fault mode.
- Parameters:
fault (str) – name of the fault mode to switch to
fmdtools.define.container.state
Defines State
class for representing variables that change over time.
State classes are used to represent mutables properties of the system that change over time.
State classes are extended and deployed by the user, as shown below:
The following template shows the basic syntax used to define states:
State class template/example.
- class fmdtools.define.container.state.State
Bases:
BaseContainer
Class for working with model states.
States which are variables in the model which change over time.
State is meant to be extended in the model definition object to add the corresponding field related to a simulation, e.g.,
>>> class ExampleState(State): ... x : float=1.0 ... y : float=1.0
Creates a class point with fields x and y which are tagged as floats with default values of 1.0.
Instancing State gives normal read/write access, e.g., one can do:
>>> p = ExampleState() >>> p.x 1.0
or:
>>> p = ExampleState(x=10.0) >>> p.x 10.0
- add(*states)
Return the addition of given attributes of the State.
Examples
>>> p = ExampleState(x=1.0, y=2.0) >>> p.add('x','y') 3.0
- base_type()
Return fmdtools type of the model class.
- div(*states)
Return the division of given attributes of the State.
Examples
>>> p = ExampleState(x=1.0, y=2.0) >>> p.div('x','y') 0.5
- get(*attnames, **kwargs)
Return the given attribute names (strings) as a numpy array.
Mainly useful for reducing length of lines/adding clarity to assignment statements. e.g.,:
>>> p = ExampleState(x=1.0, y=2.0) >>> p_arr = p.get("x", "y") >>> p_arr array([1., 2.]) >>> p.get("x") 1.0 >>> p.get("x", "y", as_array=False) [1.0, 2.0]
- gett(*attnames)
Alternative to self.get that returns a tuple, not an array.
Useful when a numpy array would translate the underlying data types poorly (e.g., np.array([1,’b’] would make 1 a string–using a tuple instead preserves the data type)).
Examples
>>> ExampleState().gett("x") 1.0 >>> ExampleState().gett("x", "y") (1.0, 1.0)
- inc(**kwargs)
Increment the given arguments by a given value.
Mainly useful for reducing length/adding clarity to increment statements, e.g.,:
>>> p = ExampleState(x=1.0, y=1.0) >>> p.inc(x=1, y=2) >>> p.x 2.0 >>> p.y 3.0
Can additionally be provided with a second value denoting a limit on the increments e.g.,:
>>> p = ExampleState(x=1.0, y=1.0) >>> p.inc(x=(3, 5.0)) >>> p.x 4.0 >>> p.inc(x=(3, 5.0)) >>> p.x 5.0
- init_hist_att(hist, att, timerange, track, str_size='<U20')
Extend init_hist_attr to use _set to get history size.
- limit(**kwargs)
Enforce limits on the value of a given property.
Mainly useful for reducing length/adding clarity to increment statements. e.g.,:
>>> p = ExampleState(x=200.0, y=-200.0) >>> p.limit(x=(0.0,100.0), y=(0.0, 100.0)) >>> p.x 100.0 >>> 0.0
- mul(*states)
Return the multiplication of given attributes of the State.
Examples
>>> p = ExampleState(x=2.0, y=3.0) >>> p.mul("x","y") 6.0
- put(as_copy=True, **kwargs)
Set the given fields to a given value.
Mainly useful for reducing length/adding clarity to assignment statements.
- Parameters:
as_copy (bool) – set to True for dicts/sets to be copied rather than referenced
**kwargs (values) – fields and values to set.
Examples
>>> p = ExampleState() >>> p.put(x=2.0, y=2.0) >>> p.x 2.0 >>> p.y 2.0
- roundto(**kwargs)
Round the given arguments to a given resolution.
Examples
>>> p = ExampleState(x=1.75850) >>> p.roundto(x=0.1) >>> p.x 1.8
- same(*args, **kwargs)
Test whether a given iterable values has the same value as each in the state.
Examples
>>> p = ExampleState(x=1.0, y=2.0) >>> p.same([1.0, 2.0], "x", "y") True >>> p.same([0.0, 2.0], "x", "y") False >>> p.same([1.0], 'x') True >>> p.same(x=1.0, y=2.0) True >>> p.same(x=0.0, y=0.0) False
- set_atts(**kwargs)
Set the given arguments to a given value.
Mainly useful for reducing length/adding clarity to assignment statements in __init__ methods (self.put is recomended otherwise so that the iteration is on function/flow states) e.g.,
>>> p = ExampleState() >>> p.set_atts(x=2.0, y=2.0) >>> p.x 2.0 >>> p.y 2.0
- sub(*states)
Return the subtraction of given attributes of the State.
Examples
>>> p = ExampleState(x=1.0, y=2.0) >>> p.sub('x','y') -1.0
- values()
Return the values of the defined fields for the state.
- warn(*messages, stacklevel=2)
Print warning message(s) when called.
- Parameters:
*messages (str) – Strings to make up the message (will be joined by spaces)
stacklevel (int) – Where the warning points to. The default is 2 (points to the place in the model)
fmdtools.define.container.parameter
Defines Parameter
class to represent attributes that do not change.
Parameter
classes are used to represent immutable properties of the system. Parameter
classes are extended and deployed by the user, as shown below:
Example of extending the Parameter
class to hold x/y/z fields.
The following template shows the basic syntax to use to define parameters:
Parameter class template/example.
- class fmdtools.define.container.parameter.Parameter(*args, strict_immutability=True, check_type=True, check_pickle=True, set_type=True, check_lim=True, **kwargs)
Bases:
BaseContainer
The Parameter class defines model/function/flow values which are immutable.
That is, the same from model instantiation through a simulation. Parameters inherit from recordclass, giving them a low memory footprint, and use type hints and ranges to ensure parameter values are valid. e.g.,:
Examples
>>> class ExampleParameter(Parameter, readonly=True): ... x: float = 1.0 ... y: float = 3.0 ... z: float = 0.0 ... x_lim = (0, 10) ... y_set = (1.0, 2.0, 3.0, 4.0)
defines a parameter with float x and y fields with default values of 30 and x_lim minimum/maximum values for x and y_set possible values for y. Note that readonly=True should be set to ensure fields are not changed.
This parameter can then be instantiated using:
>>> p = ExampleParameter(x=1.0, y=2.0) >>> p.x 1.0 >>> p.y 2.0
>>> p.copy() ExampleParameter(x=1.0, y=2.0, z=0.0)
- base_type()
Return fmdtools type of the model class.
- check_immutable()
Check if a known/common mutable or a known/common immutable.
If known immutable, raise exception. If not known mutable, give a warning.
- Raises:
Exception – Throws exception if a known mutable (e.g., dict, set, list, etc)
- check_lim(k, v)
Checks to ensure the value v for field k is within the defined limits self.k_lim or set constraints self.k_set
- Parameters:
k (str) – Field to check
v (mutable) – Value for the field to check
- Raises:
Exception – Notification that the field is outside limits/set constraints.
- check_type()
Check to ensure Parameter type-hints are being followed.
- Raises:
Exception – Raises exception if a field is not the same as its defined type.
- copy()
Create an independent copy of the container with the same attributes.
- Returns:
cop – Copy of the container with the same attributes as self.
- Return type:
Examples
>>> ex = ExContainer(4.0, 5.0) >>> ex2 = ex.copy() >>> ex2 ExContainer(x=4.0, y=5.0)
>>> ex_nest = ExNestContainer(ex2, 40.0) >>> ex_nest.copy() ExNestContainer(e1=ExContainer(x=4.0, y=5.0), z=40.0)
- copy_with_vals(**kwargs)
Creates a copy of itself with modified values given by kwargs
- reset()
Do nothing since the parameter is immutable.
- return_mutables()
Return mutable aspects of the container.
fmdtools.define.container.rand
Defines Rand
class and other methods defining random properties used in blocks.
Has public Classes and Functions:
Rand
: Superclass for Block random properties.get_pfunc_for_dist()
: Gets the corresponding probability mass/density for outcome x for probability distributions with name ‘randname’ in numpy.get_prob_for_rand()
: Gets the corresponding probability mass/density for random sample x from ‘randname’ function in numpy.calc_prob_for_integers()
: Calculate probability for random.integers.calc_prob_density_for_random()
: Calc probability density for random.random.calc_prob_for_choice()
: Calculate probability for random.choice.calc_prob_for_shuffle_permutation()
: Calculate probability for random.shuffle and random.permutation.calc_prob_for_permuted()
: Calculate probability for random.permuted.:func:`array
- class fmdtools.define.container.rand.ExampleRand(*args, seed=42, s_kwargs={}, **kwargs)
Bases:
Rand
Example Rand for testing and docs.
- probdens: float
- probs: list
- rng: Generator
- run_stochastic: bool
- seed: int
- class fmdtools.define.container.rand.Rand(*args, seed=42, s_kwargs={}, **kwargs)
Bases:
BaseContainer
Class for defining and interacting with random states of the model.
- rng
random number generator
- Type:
np.random.default_rng
- probs
probability of the given states
- Type:
list
- seed
state for the random number generator
- Type:
int
Examples
Rand is meant to be extended in model definition with random states, e.g.:
>>> class RandState(State): ... noise: float=1.0 >>> class ExampleRand(Rand): ... s: RandState = RandState()
Which enables the use of set_rand_state, update_stochastic_states, etc for updating these states with methods called from the rng when run_stochastic=True.
>>> exr = ExampleRand(run_stochastic='track_pdf') >>> exr.set_rand_state('noise', 'normal', 1.0, 1.0) >>> exr.s RandState(noise=1.3047170797544314) >>> exr.probs [0.3808442490605113]
Checking copy:
>>> exr2 = exr.copy() >>> exr2.s RandState(noise=1.3047170797544314) >>> exr2.run_stochastic 'track_pdf' >>> exr2.rng.__getstate__()['state'] == exr.rng.__getstate__()['state'] True
More state setting: >>> exr.set_rand_state(‘noise’, ‘normal’, 1.0, 1.0) >>> exr.probs [0.3808442490605113, 0.23230084450139615] >>> exr.return_probdens() 0.08847044068025682 >>> exr2.probs [0.3808442490605113]
- base_type()
Return fmdtools type of the model class.
- default_track = ('s', 'probdens')
- get_rand_states(auto_update_only=False)
Get the randomly-assigned states associated with the Rand at self.s.
- Parameters:
auto_update_only (bool, optional) – Whether to only get auto-updated states. The default is False.
- Returns:
rand_states – States in self.s
- Return type:
dict
Examples
>>> ExampleRand().get_rand_states() {'noise': 1.0} >>> ExampleRand().get_rand_states(auto_update_only=True) {}
- init_hist_att(hist, att, timerange, track, str_size='<U20')
Add field ‘att’ to history. Accommodates track_pdf option.
- probdens: float
- probs: list
- reset()
Reset Rand to the initial state.
- return_mutables()
Get mutable rand states.
- return_probdens()
Return probability density/mass corresponding to random sim.
- rng: Generator
- rolename = 'r'
- run_stochastic: bool
- seed: int
- set_field(fieldname, value, as_copy=True)
Extend BaseContainer.assign to accomodate the rng.
- set_rand_state(statename, methodname, *args)
Update the given random state with a given method and arguments.
(if in run_stochastic mode)
- Parameters:
statename (str) – name of the random state defined
methodname – str name of the numpy method to call in the rng
*args (args) – arguments for the numpy method
- set_rng(other_rng)
Set the state of the rng in the Rand to the same state as other_rng.
- update_seed(seed)
Update the random seed to the given value.
- update_stochastic_states()
Update the defined stochastic states defined to auto-update.
- class fmdtools.define.container.rand.RandState
Bases:
State
Example random state for testing and docs.
- noise: float
- fmdtools.define.container.rand.as_prob(pd)
Return array output of probabilities as single joint probability.
- fmdtools.define.container.rand.calc_prob_density_for_random(x)
Get probability density for np.default_rng.random.
Examples
>>> calc_prob_density_for_random([0.5]) 1.0 >>> calc_prob_density_for_random([0.5, 0.1, 0.9, 0.5]) 0.25 >>> calc_prob_density_for_random([0.5, 0.1, 0.9, 0.5, 1.1]) 0.0
- fmdtools.define.container.rand.calc_prob_for_choice(x, options=[], size=1, replace=True, p=None)
Get probability corresponding to a call to np.choice.
Examples
>>> calc_prob_for_choice([1], [1,2]) 0.5 >>> calc_prob_for_choice([1,2], [1,2], replace=False) 0.5 >>> calc_prob_for_choice([1,2], [1,2,3], p=[0.1, 0.1, 0.9]) 0.01
- fmdtools.define.container.rand.calc_prob_for_integers(x, *args)
Get probability for np.default_rng.integers.
Examples
>>> calc_prob_for_integers([0], 2) 0.5 >>> calc_prob_for_integers([0, 1], 0, 2) 0.25 >>> calc_prob_for_integers([0, 1, 2], 0, 2) 0.0
- fmdtools.define.container.rand.calc_prob_for_permuted(x, axis=None)
Get probability corresponding to rng.permuted.
Examples
>>> calc_prob_for_permuted(np.array([[1,2], [3,4]])) 0.041666666666666664 >>> calc_prob_for_permuted(np.array([[1,2], [3,4], [5,6]]), 0) 0.16666666666666666 >>> calc_prob_for_permuted(np.array([[1,2], [3,4], [5,6]]), 1) 0.5
- fmdtools.define.container.rand.calc_prob_for_shuffle_permutation(x, options, *args, check_valid=True)
Get probability corresponding to rng.shuffle and rng.permutation.
Examples
>>> calc_prob_for_shuffle_permutation([1,2], [1,2]) 0.5 >>> calc_prob_for_shuffle_permutation([2,1,3], [1,2,3]) 0.16666666666666666
- fmdtools.define.container.rand.get_custom_pfunc(func_handle, *args, **kwargs)
Get callable for calc_func pdf/pmf function with provided arguments.
- fmdtools.define.container.rand.get_exp_ray_pdf(randname, *args)
Get callable for scipy exponential and rayleigh pdf with numpy.random arguments.
Examples
>>> get_exp_ray_pdf("rayleigh", 2)(2.0) 0.3032653298563167 >>> get_exp_ray_pdf("rayleigh", 2, 2)(2.0) 0.0 >>> get_exp_ray_pdf("exponential", 1)(0.0) 1.0 >>> get_exp_ray_pdf("exponential", 1, -1.0)(0.0) 0.36787944117144233
- fmdtools.define.container.rand.get_hypergeometric_pmf(*args)
Get callable for scipy hypergeomeric pmf with numpy.random arguments.
Examples
>>> get_hypergeometric_pmf(50, 450, 100)(10) 0.14736784420411747
- fmdtools.define.container.rand.get_lognormal_pdf(*args)
Get callable for scipy lognormal pdf with numpy.random arguments.
Examples
>>> get_lognormal_pdf(0, .25)(1.0) 1.5957691216057308
- fmdtools.define.container.rand.get_pfunc_for_dist(randname, *args)
Get the probability mass/density function corresponding to a numpy random draw.
Uses a call to scipy.stats when available (with the correct arguments), otherwise uses a custom function provided in this module.
- Parameters:
randname (str) – Name of numpy.random distribution
args (tuple) – Arguments sent to numpy.random distribution
- Returns:
pfunc – pdf/pmf for the draw.
- Return type:
callable
- fmdtools.define.container.rand.get_prob_for_rand(x, randname, *args)
Get the probability density/mass for random sample x.
Pulled from ‘randname’ function in numpy. Calls get_pfunc_for_dist when scipy has a corresponding distribution function, otherwise calls custom functions to calculate the probabilities/probability densities.
- Parameters:
x (int/float/array) – samples to get probability mass/density of
randname (str) – Name of numpy.random distribution
*args (tuple) – Arguments sent to numpy.random distribution
- Returns:
prob
- Return type:
float of probability density or mass, depending on function
Examples
>>> get_prob_for_rand(0, "normal", 0, 1) 0.3989422804014327 >>> get_prob_for_rand([0,0], "normal", 0, 1) 0.15915494309189535 >>> get_prob_for_rand(2, "integers", 4) 0.25
- fmdtools.define.container.rand.get_scipy_pdf(randname, *args, **kwargs)
Get callable for scipy pdf function with given name and arguments.
- fmdtools.define.container.rand.get_scipy_pmf(randname, *args, **kwargs)
Get callable for scipy pmf function with given name and arguments.
- fmdtools.define.container.rand.get_standard_t_pdf(*args)
Get callable for scipy multivariate_t dist for a numpy.random.standard_t call.
Note: doesn’t support len(x)>1.
Examples
>>> get_standard_t_pdf(1)([0.0]) 0.31830988618379075
- fmdtools.define.container.rand.get_triangular_pdf(*args)
Get callable for scipy.triang corresponding to a numpy.random.triangular call.
Examples
>>> get_triangular_pdf(0,1,2)(0.0) 0.0 >>> get_triangular_pdf(0,1,2)(1.0) 1.0 >>> get_triangular_pdf(0,1,2)(1.5) 0.5 >>> get_triangular_pdf(0,1,2)(0.5, 0.5) 0.25
- fmdtools.define.container.rand.get_vonmises_pdf(*args)
Get callable for scipy.vonmises corresponding to numpy.random arguments.
fmdtools.define.container.time
Defines Time
class for containing timers and time-related constructs.
- class fmdtools.define.container.time.ExtendedTime(*args, **kwargs)
Bases:
Time
Example extended time class for testing, etc.
- dt: float
- run_times: int
- t_ind: int
- t_loc: float
- time: float
- timernames = ('t1', 't2')
- timers: dict
- use_local: bool
- class fmdtools.define.container.time.Time(*args, **kwargs)
Bases:
BaseContainer
Class for defining all time-based aspects of a Block (e.g., time, timestep, timers).
- time
real time for the model
- Type:
float
- dt
timestep size
- Type:
float
- t_ind
index of the given time
- Type:
int
- t_loc
local time (e.g., for actions with durations)
- Type:
float
- run_times
number of times to run the behavior if running at a different timestep than global
- Type:
int
- timers
dictionary of instantiated timers
- Type:
dict
- use_local
Whether to use the local timetep (vs global timestep)
- Type:
bool
- timernames
Names of timers to instantiate.
- Type:
tuple
Examples
Extending the time class gives one access to a dict of timers:
>>> class ExtendedTime(Time): ... timernames = ('t1', 't2')
>>> t = ExtendedTime() >>> t.timers['t1'] Timer t1: mode= standby, time= 0.0
These timers can then be used:
>>> t.timers['t1'].inc(1.0) >>> t.timers['t1'] Timer t1: mode= ticking, time= 1.0
Checking copy:
>>> t2 = t.copy() >>> t2.timers {'t1': Timer t1: mode= ticking, time= 1.0, 't2': Timer t2: mode= standby, time= 0.0}
Check that copied timers are independent:
>>> t2.timers['t1'].__hash__() == t.timers['t1'].__hash__() False
- base_type()
Return fmdtools type of the model class.
- default_track = 'timers'
- dt: float
- init_hist_att(hist, att, timerange, track, str_size='<U20')
Add field ‘att’ to history. Accommodates time and timer tracking.
- local_dt = 1.0
- reset()
Reset time to the initial state.
- return_mutables()
Return mutable aspects of the container.
- rolename = 't'
- run_times: int
- set_timestep()
Set the timestep of the function given.
If using the option use_local, local_timestep is used instead of global_timestep.
- t_ind: int
- t_loc: float
- time: float
- timernames = ()
- timers: dict
- use_local: bool