Hypergeometric Variable#
- class uqpce.pce.variables.discrete.HypergeometricVariable(M, n, N, interval_low=0, order=2, name='', number=0)#
Represents a discrete hypergeometric variable. The methods in this class correspond to those of a discrete hypergeometric variable.
- Parameters:
M – the M parameter of the variable
n – the n parameter of the variable
N – the N parameter of the variable
interval_low – the low interval of the variable
order – the order of the model to calculate the orthogonal polynomials and norm squared values
name – the name of the variable
number – the number of the variable from the file
- check_distribution(X)#
Overrides the Variable class check_distribution to align with a discrete hypergeometric distribution.
- Parameters:
X – The array of samples to check against the variable distribution
- check_num_string()#
Searches to replace sring ‘pi’ with its numpy equivalent in any of the values that might contain it.
- find_high_lim()#
Finds the high interval to use in calculations for the variable basis and univariate norm squared values.
- generate_samples(count, standardize=False)#
Overrides the Variable class generate_samples to align with a discrete uniform distribution.
- Parameters:
samp_size – the number of points needed to be generated
- get_mean()#
Returns the mean of a DiscreteVariable.
- get_probability_density_func()#
Calculates the probabilities for the HypergeomericVariable x_values.
- standardize(orig, std_vals)#
Overrides the Variable class standardize to align with a discrete Hypergeomeric distribution.
- Parameters:
orig – the un-standardized values
std_vals – the attribue name for the standardized vals
- standardize_points(values)#
Standardizes and returns the inputs points.
- Parameters:
values – unstandardized points corresponding to the variable’s distribution
- unstandardize_points(values)#
Calculates and returns the unscaled variable value from the standardized value.
- Parameters:
values – the standardized value to be unstandardized