Beta Variable

Beta Variable#

class uqpce.pce.variables.continuous.BetaVariable(alpha, beta, interval_low=0.0, interval_high=1.0, order=2, name='', number=0)#

Represents a beta variable. The methods in this class correspond to those of a beta variable.

Parameters:
  • alpha – the alpha parameter of the variable

  • beta – the beta parameter of the variable

  • interval_low – the low interval of the variable

  • interval_high – the high interval of the variable

  • order – the order of the model to calculate the orthogonal polynomials and norm squared values

  • name – the name of the variable

  • number – the number of the variable from the file

check_distribution(X)#

Overrides the Variable class check_distribution to align with an beta distribution.

Parameters:

X – The array of samples to check against the variable distribution

check_num_string()#

Searches to replace sring ‘pi’ with its numpy equivalent in any of the values that might contain it.

generate_orthopoly()#

Generates the orthogonal polynomials for a beta variable up to the self.self.order of polynomial expansion.

generate_samples(count, standardize=False)#

Overrides the Variable class generate_samples to align with a beta distribution.

Parameters:
  • count – the number of points needed to be generated

  • standardize – boolean for generating samples for the standardized version of the variable

get_mean()#

Return the mean of the variable.

standardize(orig, std_vals)#

Overrides the Variable class standardize to align with a beta distribution.

Parameters:
  • orig – the un-standardized values

  • std_vals – the attribue name for the standardized vals

standardize_points(values)#

Standardizes and returns the inputs points.

Parameters:

values – unstandardized points corresponding to the variable’s distribution

unstandardize_points(value)#

Calculates and returns the unscaled variable value from the standardized value.

Parameters:

value – the standardized value to be unstandardized