Case 11: Subsonic F-16 trimmed flight across earth

Verifies

Atmosphere, air-data calculations

Gravitation

J2

Geodesy

WGS-84 rotating

Atmosphere

US 1976 STD

Winds

still air

Vehicle

F-16 (unaugmented)

Notes

Initial position is 10,000 ft above KFFA airport on a 45 degree true course. 335.15 KTAS. Stability augmentation off. Test of trim solution.

In this example, we first find the trim conditions for the F16 in sub-sonic flight, then perform a steady level sight. To find trim, we use scipy’s optimize module to minimize a trim residual.

from simupy.block_diagram import BlockDiagram
from simupy import systems
import simupy_flight
import numpy as np
from scipy import optimize

from nesc_testcase_helper import plot_nesc_comparisons, int_opts, benchmark
from nesc_testcase_helper import ft_per_m, kg_per_slug

The F16_model.F16 class composes the aerodynamic, propulsion, and inertia models into a simupy_flight Vehicle

import F16_model
from F16_control import F16_control

F16_vehicle = F16_model.F16()

Create a dictionary of keyword arguments for the initial condition

spec_ic_args = dict(
    phi_D=36.01916667 * np.pi / 180,  # latitude
    lamda_D=-75.67444444 * np.pi / 180,  # longitude
    h=10_013 / ft_per_m,
    V_N=400.0 / ft_per_m,
    V_E=400.0 / ft_per_m,
    V_D=0.0 / ft_per_m,
    psi=45.0 * np.pi / 180,
    theta=2.653814 * np.pi / 180,
    phi=0.0 * np.pi / 180,
    p_B=0.0 * np.pi / 180,
    q_B=0.0 * np.pi / 180,
    r_B=0.0 * np.pi / 180,
)

knots_per_mps = 1.94384

Configure the earth model

earth = simupy_flight.Planet(
    gravity=simupy_flight.earth_J2_gravity,
    winds=simupy_flight.get_constant_winds(),
    atmosphere=simupy_flight.atmosphere_1976,
    planetodetics=simupy_flight.Planetodetic(
        a=simupy_flight.earth_equitorial_radius,
        omega_p=simupy_flight.earth_rotation_rate,
        f=simupy_flight.earth_f,
    ),
)

Air density at the surface is used for the equivalent air-speed calculation

rho_0 = earth.atmosphere(0, 0, 0, 0)[0]

Select the feedback channels used for the controller

controller_feedback_indices = np.array(
    [
        earth.h_D_idx,
        earth.V_T_idx,
        earth.alpha_idx,
        earth.beta_idx,
        earth.psi_idx,
        earth.theta_idx,
        earth.phi_idx,
        earth.p_B_idx,
        earth.q_B_idx,
        earth.r_B_idx,
        earth.rho_idx,
    ]
)

dim_feedback = len(controller_feedback_indices)

This is a function generator for the controller (auto-pilot). The generated function uses the DaveML implementation of the controller, which has several configuration options set by the generator.

class F16ControllerBlock:
    num_events = 1
    dim_state = 0
    dim_output = 4
    dim_input = 15

    initial_condition = np.array([])

    def __init__(self, throttleTrim, longStkTrim, sasOn=False, apOn=False, event_t=0.):
        self.throttleTrim = throttleTrim
        self.longStkTrim = longStkTrim
        self.sasOn = sasOn
        self.apOn = apOn
        self.event_t = event_t

    def update_equation_function(self, t, u, event_channels):
        return self.__call__(t, u)

    def prepare_to_integrate(self, t, u):
        return self.__call__(t, u)

    def event_equation_function(self, t, u):
        return np.array([t - self.event_t])

    def output_equation_function(self, t, u):
        return self.__call__(t, u)

    def __call__(self, t, u):
        throttle, longStk, latStk, pedal = 0.0, 0.0, 0.0, 0.0  # pilot command

        (
            # feedback
            alt,
            V_T,
            alpha,
            beta,
            psi,
            theta,
            phi,
            pb,
            qb,
            rb,
            # rho to calculate equivalent airspeed
            rho,
            # commands
            keasCmd,
            altCmd,
            latOffset,
            baseChiCmd,
        ) = u

        Vequiv = V_T * np.sqrt(rho / rho_0)
        angles = np.array([alpha, beta, phi, theta, psi])
        alpha, beta, phi, theta, psi = angles * 180 / np.pi

        control_eart = F16_control(
            throttle,
            longStk,
            latStk,
            pedal,
            self.sasOn,
            self.apOn,
            keasCmd,
            altCmd,
            latOffset,
            baseChiCmd,
            alt * ft_per_m,
            Vequiv * knots_per_mps,
            alpha,
            beta,
            phi,
            theta,
            psi,
            pb,
            qb,
            rb,
            self.throttleTrim,
            self.longStkTrim,
        )
        return control_eart

This function computes the trim residual using the local_translational_trim_residual helper function, which calculates the accelerations experienced by the vehicle for a given flight condition, longitudinal stick position, and throttle value.

def eval_trim(flight_condition, longStk, throttle):
    kin_out = earth.output_equation_function(0, flight_condition)
    controller_func = F16ControllerBlock(
        throttleTrim=throttle, longStkTrim=longStk
    )
    aero_plus_prop_acceleration = simupy_flight.dynamics.dynamics_output_function(
        F16_vehicle, 0, *kin_out, *controller_func(0, np.zeros(dim_feedback + 4))
    )

    gen_accel = aero_plus_prop_acceleration

    gen_accel[:3] = earth.local_translational_trim_residual(
        *flight_condition[:-3], *aero_plus_prop_acceleration[:-3]
    ).squeeze()

    return gen_accel

This function uses optimize.minimize() to minimize the trim redisual. It uses the throttle, longitudinal stick position, pitch angle, and optionally the roll angle, as free variables to achieve trim. The euler angles are passed through the flight condition variable.

def run_trimmer(flight_ic_args, throttle_ic=0.0, longStk_ic=0.0, allow_roll=False):
    len_vars = 3 + allow_roll

    psi, theta_ic, phi_ic = (
        flight_ic_args["psi"],
        flight_ic_args["theta"],
        flight_ic_args["phi"],
    )

    initial_guess = np.zeros(len_vars)
    initial_guess[0] = theta_ic
    initial_guess[1] = throttle_ic
    initial_guess[2] = longStk_ic

    extra_index = 3

    if allow_roll:
        initial_guess[extra_index] = phi_ic
        extra_index += 1

    def parse_x(x):
        theta, throttle, longStk = x[:3]
        extra_index = 3

        if allow_roll:
            phi = x[extra_index]
            extra_index += 1
        else:
            phi = phi_ic

        return theta, phi, longStk, throttle

    weighting_matrix = np.eye(6)

    aileron, rudder = 0.0, 0.0

    def trim_opt_func(x):
        eval_args = flight_ic_args.copy()
        theta, phi, longStk, throttle = parse_x(x)
        eval_args["theta"] = theta
        eval_args["phi"] = phi
        flight_condition = earth.ic_from_planetodetic(**eval_args)
        return np.linalg.norm(
            weighting_matrix @ eval_trim(flight_condition, longStk, throttle), ord=2
        )

    opt_res = optimize.minimize(
        trim_opt_func,
        initial_guess,
        tol=1e-12,
        options={
            "disp": True,
            "adaptive": True,
            "fatol": 1e-12,
            "maxiter": 20_000,
            "xatol": 1e-12,
        },
        method="Nelder-Mead",
    )

    opt_theta, opt_phi, opt_longStk, opt_throttle = opt_result = parse_x(opt_res.x)
    opt_args = flight_ic_args.copy()
    opt_args["theta"] = opt_theta
    opt_args["phi"] = opt_phi
    opt_flight_condition = earth.ic_from_planetodetic(**opt_args)
    print(
        "pitch: %.4e  roll: %.4e  longStk: %.4f  throttle: %.4f"
        % (
            opt_theta * 180 / np.pi,
            opt_phi * 180 / np.pi,
            opt_longStk * 100,
            opt_throttle * 100,
        )
    )
    print(
        "accelerations:\n",
        eval_trim(opt_flight_condition, opt_longStk, opt_throttle).reshape((2, 3)),
    )
    return opt_args, np.array([opt_throttle, opt_longStk])

Run the trimmer to determine the initial condition for the simulation

opt_args, opt_ctrl = run_trimmer(
    spec_ic_args, throttle_ic=0.0, longStk_ic=0.0, allow_roll=False
)

trimmed_flight_condition = earth.ic_from_planetodetic(**opt_args)

trimmed_KEAS = (
    earth.output_equation_function(0, trimmed_flight_condition)[earth.V_T_idx]
    * np.sqrt(
        earth.output_equation_function(0, trimmed_flight_condition)[earth.rho_idx]
        / rho_0
    )
    * knots_per_mps
)

earth.initial_condition = trimmed_flight_condition
Optimization terminated successfully.
         Current function value: 0.006500
         Iterations: 291
         Function evaluations: 554
pitch: 2.6351e+00  roll: 0.0000e+00  longStk: 12.9236  throttle: 13.7561
accelerations:
 [[-4.59609832e-03  4.59610301e-03  2.09229079e-09]
 [-2.98437663e-09 -1.70643291e-09  2.12618714e-09]]

Configure the controller using the trim settings. This requires additional blocks to generate command signals at the trimmed value

controller_block = F16ControllerBlock(*opt_ctrl)

keasCmdOutput = np.array([trimmed_KEAS])
keasCmdBlock = systems.SystemFromCallable(lambda *args: keasCmdOutput, 0, 1)

altCmdOutput = np.array([spec_ic_args["h"] * ft_per_m])
altCmdBlock = systems.SystemFromCallable(lambda *args: altCmdOutput, 0, 1)

baseChiCmdOutput = np.array([spec_ic_args["psi"] * 180 / np.pi])
baseChiCmdBlock = systems.SystemFromCallable(lambda *args: baseChiCmdOutput, 0, 1)

This block computes the rate of lateral offset error, which is integrated and used by the auto-pilot to compute the heading to drive the offset to zero.

def latOffsetStateEquation(t, x, u):
    chi_cmd, V_N, V_E = u
    V_ground_magnitude = np.sqrt(V_N**2 + V_E**2)
    V_ground_heading = np.arctan2(V_E, V_N)
    return V_ground_magnitude * np.sin(V_ground_heading - chi_cmd * np.pi / 180)


def latOffsetOutputEquation(t, x):
    return x * ft_per_m


latOffsetBlock = systems.DynamicalSystem(
    state_equation_function=latOffsetStateEquation,
    output_equation_function=latOffsetOutputEquation,
    dim_state=1,
    dim_input=3,
    dim_output=1,
)

Build a block diagram of the planet kinematics block, the F16 vehicle block, the base controller block, and the various command generating blocks and connect them appropriately.

BD = BlockDiagram(
    earth,
    F16_vehicle,
    controller_block,
    keasCmdBlock,
    altCmdBlock,
    latOffsetBlock,
    baseChiCmdBlock,
)
BD.connect(earth, F16_vehicle, inputs=np.arange(earth.dim_output))
BD.connect(F16_vehicle, earth, inputs=np.arange(F16_vehicle.dim_output))
BD.connect(
    controller_block,
    F16_vehicle,
    inputs=np.arange(earth.dim_output, earth.dim_output + 4),
)
BD.connect(
    earth,
    controller_block,
    outputs=controller_feedback_indices,
    inputs=np.arange(dim_feedback),
)

BD.connect(keasCmdBlock, controller_block, inputs=[dim_feedback + 0])
BD.connect(altCmdBlock, controller_block, inputs=[dim_feedback + 1])
BD.connect(latOffsetBlock, controller_block, inputs=[dim_feedback + 2])
BD.connect(baseChiCmdBlock, controller_block, inputs=[dim_feedback + 3])

Simulate and assess the results

int_opts["nsteps"] = 5_000
if __name__ == "__main__":

    with benchmark() as b:
        res = BD.simulate(180, integrator_options=int_opts)

    plot_nesc_comparisons(res, "11")
  • nesc case11
  • nesc case11
  • nesc case11
  • nesc case11
  • nesc case11
  • nesc case11
  • nesc case11
  • nesc case11
  • nesc case11
  • nesc case11
time to simulate: 49.374 s

Total running time of the script: (0 minutes 54.860 seconds)

Gallery generated by Sphinx-Gallery