RANSAC Driver class.
More...
#include <ransac.h>
|
template<class ContainerT1 , class ContainerT2 > |
void | inliers (typename FittingFuncT::result_type const &H, std::vector< ContainerT1 > const &p1, std::vector< ContainerT2 > const &p2, std::vector< ContainerT1 > &inliers1, std::vector< ContainerT2 > &inliers2) const |
|
template<class ContainerT1 , class ContainerT2 > |
std::vector< size_t > | inlier_indices (typename FittingFuncT::result_type const &H, std::vector< ContainerT1 > const &p1, std::vector< ContainerT2 > const &p2) const |
|
void | reduce_min_num_output_inliers () |
|
| RandomSampleConsensus (FittingFuncT const &fitting_func, ErrorFuncT const &error_func, int num_iterations, double inlier_threshold, int min_num_output_inliers, bool reduce_min_num_output_inliers_if_no_fit, bool increase_threshold_if_no_fit) |
| Constructor - Stores all the inputs in member variables. More...
|
|
template<class ContainerT1 , class ContainerT2 > |
FittingFuncT::result_type | operator() (std::vector< ContainerT1 > const &p1, std::vector< ContainerT2 > const &p2) |
| As attempt_ransac but keep trying with smaller numbers of required inliers. More...
|
|
template<class ContainerT1 , class ContainerT2 > |
FittingFuncT::result_type | attempt_ransac (std::vector< ContainerT1 > const &p1, std::vector< ContainerT2 > const &p2) |
| Run RANSAC on two input data lists using the current parameters. More...
|
|
template<class FittingFuncT, class ErrorFuncT>
class sparse_mapping::RandomSampleConsensus< FittingFuncT, ErrorFuncT >
RANSAC Driver class.
◆ RandomSampleConsensus()
template<class FittingFuncT , class ErrorFuncT >
sparse_mapping::RandomSampleConsensus< FittingFuncT, ErrorFuncT >::RandomSampleConsensus |
( |
FittingFuncT const & |
fitting_func, |
|
|
ErrorFuncT const & |
error_func, |
|
|
int |
num_iterations, |
|
|
double |
inlier_threshold, |
|
|
int |
min_num_output_inliers, |
|
|
bool |
reduce_min_num_output_inliers_if_no_fit, |
|
|
bool |
increase_threshold_if_no_fit |
|
) |
| |
|
inline |
Constructor - Stores all the inputs in member variables.
◆ attempt_ransac()
template<class FittingFuncT , class ErrorFuncT >
template<class ContainerT1 , class ContainerT2 >
FittingFuncT::result_type sparse_mapping::RandomSampleConsensus< FittingFuncT, ErrorFuncT >::attempt_ransac |
( |
std::vector< ContainerT1 > const & |
p1, |
|
|
std::vector< ContainerT2 > const & |
p2 |
|
) |
| |
|
inline |
Run RANSAC on two input data lists using the current parameters.
◆ inlier_indices()
template<class FittingFuncT , class ErrorFuncT >
template<class ContainerT1 , class ContainerT2 >
std::vector<size_t> sparse_mapping::RandomSampleConsensus< FittingFuncT, ErrorFuncT >::inlier_indices |
( |
typename FittingFuncT::result_type const & |
H, |
|
|
std::vector< ContainerT1 > const & |
p1, |
|
|
std::vector< ContainerT2 > const & |
p2 |
|
) |
| const |
|
inline |
◆ inliers()
template<class FittingFuncT , class ErrorFuncT >
template<class ContainerT1 , class ContainerT2 >
void sparse_mapping::RandomSampleConsensus< FittingFuncT, ErrorFuncT >::inliers |
( |
typename FittingFuncT::result_type const & |
H, |
|
|
std::vector< ContainerT1 > const & |
p1, |
|
|
std::vector< ContainerT2 > const & |
p2, |
|
|
std::vector< ContainerT1 > & |
inliers1, |
|
|
std::vector< ContainerT2 > & |
inliers2 |
|
) |
| const |
|
inline |
◆ operator()()
template<class FittingFuncT , class ErrorFuncT >
template<class ContainerT1 , class ContainerT2 >
As attempt_ransac but keep trying with smaller numbers of required inliers.
◆ reduce_min_num_output_inliers()
template<class FittingFuncT , class ErrorFuncT >
The documentation for this class was generated from the following file:
- localization/sparse_mapping/include/sparse_mapping/ransac.h