List of Routines By Functionality | MISR Toolkit: Main Page
-Abstract MTK_LINEAR_REGRESSION_CALC Use linear regression to fit a set of observations (x,y) to the model: y(x) = a + b * x -Copyright Copyright (2013), California Institute of Technology. U.S. Government sponsorship acknowledged. -I/O Given: num number of elements x x values y y values y_sigma uncertainty in y values the call: status = MTK_LINEAR_REGRESSION_CALC( num, x, y, y_sigma, a, b, corr ) returns: status 0 on success; otherwise failure a variable a b variable b corr correlation for linear regression -Examples ;; ;; Set up input parameters ;; num = 4 x = [1,5,7,8] y = [12,14,19,21] y_sigma = [0.1, 0.2, 0.2, 0.3] ;; ;; The call ;; status = MTK_LINEAR_REGRESSION_CALC( num, x, y, y_sigma, a, b, corr ) ;; ;; Output... ;; print, '=================================================' print, a, b, corr IDL outputs: ================================================= 10.696193 0.0000000 0.0000000 0.0000000 1.0944363 0.0000000 0.0000000 0.0000000 0.94802655 0.0000000 0.0000000 0.0000000 -Particulars None. -Required Reading For important details concerning this module's function, please refer to the MTK routine MtkLinearRegressionCalc.c. -Version -IDL-MTK Version 1.2.4