MonteCarloGenerate (MCG)

Model Verification Documentation

Originally written by Gary Turner (Odyssey Space Research) 2020
Integrated into Trick Open Source in 2023 by
Isaac Reaves (NASA) in 2022
Dan Jordan (NASA) in 2023

See the official Trick documentation for MCG details and the
user guide

1

MonteCarloGenerate Model (Verification Only)

VTTTICALION ...ttt ettt ettt e bt et e h e s bt et e s it e sbe e beestenaeenbesaaenbeenneas 3
1.1 RUN _NOMINGAL...ciiiiiiiiieiiee ettt ettt et ettt esateesbeessbeensaesnsaenseennnes 3
1.1.1 Uniform DIStriDULION.oouiiriiiieiiieteeie ettt sttt 4
1.1.2 NOTmMal DISIIDULIONeiiiiieiieiieeieeeee ettt sttt s 4
1.1.3 Truncated Normal DiStribUtIONcocvieiiieiiienieeieeeie ettt ettt 5
1.1.3.1 Truncated by Standard Deviations from Meanccceceevieerieniienienieeee e 5
1.1.3.2 Truncated by Difference from Mean...........ccccceeriieiieiiieiieiieciecie e 6
1.1.3.3 Truncated by Specified BoUNdScccceeriiiiiiiiiiiiieiiicee e 6
1.1.4 Truncated On Left Onlyc.cooviiiiiiiiiieie ettt 7
1.1.5 Truncated on Right Only..........cooiiiiiiiiiiii e e 7
1.1.6 Dispersion in NON-NAtIVE UNILScc.eeeiieriieriieeiiieniieeiteeniteeteesieeeteesieesseessaesseeseesssesnseens 8
1.1.7 Discrete Integer (Uniform DiStribUtion)ccueevveeiiierieeiiieniie e 8
1.1.8 Discrete String (Uniform DiStribution)............cceeviieiiierieiiiieiiecieesie e 9
1.1.9 Discrete Boolean (Uniform Distribution)cccvieeiiieiiieeiiieciecceeceee e 10
1.1.10 Python Code INJECHION.ccciieiieriieeiiesiie ettt ettt ettt et esieeeteessaeenbeesnneensaens 10
1.1.10.1 LN Of COAE....iiiiiiieiiiie ettt s 10
1.1.10.2 Execution of @ FUNCHOMNccuoeiiiiiiieiieciceiece ettt 11
1.1.10.3 Execution Of File OF SCIIPL....cc.iiiiiiiiieiieiie ettt 11
L.1.11 Extraction From Filecooooiiiiiiiiiiieic ettt 12
1.1.12 Assignment of FiXed VAUcccooiiiiiiiiiiiiecee e 14
1.1.13 Assignment of Semi-Fixed Valuecccoooiiiiiiiiiiiicieeeee et 14
1.2 Reading Values FTOm @ Filecccoooiiiiiiiiiiiiciieeeece ettt 14
1.2.1 SeQUENTIAL LINESciiiiiieiiiieiieeie ettt ettt ettt e s e et e enbe e beesnseensaens 15
1.2.2 Random Lines with Linked Variables.............ccoceeviiiiiiiiiiiniiciiece e 15
1.2.3 Random Lines with Independent Variablescocceeviiiiiiiiiniiiieicceee e 16
1.3 DiStrIDULION ANALYSES ...uvieeiieiiieiie ettt ettt ettt e et e et e s be et e eabeeseeesbeeseesnseenne 16
1.3.1 Uniform DIStriDULION.ooiiriieieiierieteeee ettt st 16
1.3.2 Normal DIStTIDULION ..c...ovuiiiiiiiiiiiieeece ettt st st 17
Any normal distribution may be truncated. As we saw in section 5.1.3, a normal distribution
can be truncated according to one of 3 methods for specifying the range:...........cccceevvveriennnnnn. 17
1.3.2.1 Truncated by Prescribed Rangecccooiieiiiiiiiiiiiieeiieeeeee e 18
1.3.2.2 Truncated by Difference from Mean............cccceeviiriiieniiiiiienieeieeeeeeeee e 19
1.3.2.3 Truncated by Standard Deviations from Meancceecueeviiriienieniieenieeieeiee e 20

1 Verification

The verification of the model is provided in directory verif/SIM verif.

This verification package comprises runs categorized into several sections:

RUN_nominal contains an example of each type of assignment available to the model. This is the primary
test

RUN_random* contains a more in-depth look at the random variables, including consideration of the
generated distribution.

RUN_file* considers the different configurations of using data read from a file.

RUN_generate_meta_data_early tests the consequence of generating meta data before the assignments
have been prepared

RUN_remove_variable tests the ability to remove a variable from distribution.
RUN_WARN* test the misconfigurations that should lead to warning messages.
RUN_ERRORY* test the misconfigurations that should lead to error messages.
1O* test problems associated with reading or writing from the specified files.
FAIL* test the misconfigurations that should lead to terminal failure.

1.1 RUN_nominal

Execution of RUN_nominal/input.py results in:

generation of the MONTE RUN _nominal directory, which contains:

o RUN¥*. A set of configurations for each monte-carlo run. For unit-test purposes this contains only 2 runs;
for this verification exercise the number of runs is increased to 20. Each directory contains:

* monte_input_a.py. This is the input file that would be provided to the S_main to execute the specific
scenario. Note - This file is typically called monte_input.py for normal usage of the model; it is
generally referred to as the monte-input file.

= monte_variables. A list of the dispersed variables; note that this is not a comprehensive set of every

assignment generated by the model, only those assignments that can be expressed as a value assigned
to a variable. Each run has a copy of the same file.

= monte_values. A list of the values assigned to each variable identified in monte_variables for this
specific run.

o monte_variables. A copy of the file found in each RUN*.
° monte_values_all runs. A concatenation of all the RUN */monte_values files.
Execution of the generated monte-input.py files

o This generates a file log fest data.csv in each RUN*, which contains the values of the variables located
in the simulation as generated in that scenario. This is a more comprehensive set than that found in
monte_variables because it includes assignments to variables that cannot be expressed as simple direct
assignments. The values of those variables included in monte_variables should match those found in
log test data.csv.

In this section, we will consider each assignment generation one at a time. For each generation type, the same
presentation format will be used:

the generation command will be provided, highlighted in yellow. e.g.:

mc_var = trick.MonteCarloVariableRandomUniform("test.x_uniform", 0, 10, 20)

e The relevant lines from the monte-input files is shown, highlighted in teal. Note — this is a concatentation of
lines taken from each monte-input file, typically 1 line per file; these lines do not exist as a block anywhere in
MONTE RUN _nominal.

o In most cases, these lines are simple assignments of the form:

o In some cases, they are Python instructions:

e Where the data in log test data.csv is required to confirm expected execution of the monte-input file
contents, these logged outputs will be presented, highlighted in orange.

+ xline_command (logged) 0 0 2437918372 16.78864717 19.34692896

e Where messages or content are broadcast to stdout, these will be included highlighted in green:

-_—

.1.1 Uniform Distribution

mc_var = trick.MonteCarloVariableRandomUniform("test.x_uniform", 0, 10, 20)

1.1.2 Normal Distribution

mc_var = trick.MonteCarloVariableRandomNormal("test.x_normal", 2, 10, 2)
4

1.1.3 Truncated Normal Distribution

There are several methods by which a normal distribution can be truncated; these are explored here and in more detail
in section 5.3.2.

1.1.3.1 Truncated by Standard Deviations from Mean

Distribution ~N(10,2) truncated to lie with 0.5 standard deviations from the mean should produce a distribution with
values in the range (9, 11)

mc_var = trick.MonteCarloVariableRandomNormal ("test.x_normal_trunc[1]", 2, 10, 2)

3
o
<
Q
=
—
-
c
>
Q
Q
—
)
—
o
(&)

I

—
=}
Q
2
<
o
S
—
()
(@)
Q
=
%
Q
3
Q
=2
(0]
Py
Q
3
Q.
o
3
pd
o
=
3
o
Py
(0
Q
=
<
&)
N

1.1.3.2 Truncated by Difference from Mean

Distribution ~N(10,2) truncated to lie within [-0.5, +0.7] from the mean should produce a distribution with values in
the range (9.5, 10.7)

mc_var = trick.MonteCarloVariableRandomNormal ("test.x_normal_trunc[1]", 2, 10, 2)

mc_var.truncate(-0.5, 0.7, trick.MonteCarloVariableRandomNormal.Relative)
RUN_000: test.x_normal_trunc[1] = 9.954870507417668
RUN_001: test.x_normal_trunc[1] = 9.912272360185705
RUN_002: test.x_normal_trunc[1] = 9.864955835300426
RUN_003: test.x_normal_trunc[1] = 9.837149685311553
RUN_004: test.x_normal_trunc[1] = 9.507649693417006
RUN_005: test.x_normal_trunc[1] = 10.56080947072924
RUN_006: test.x_normal_trunc[1] = 10.19631186831437
RUN_007: test.x_normal_trunc[1] = 9.804159469162096
RUN_008: test.x_normal_trunc[1] = 10.10165106830803
RUN_009: test.x_normal_trunc[1] = 10.12373334458601
RUN_010: test.x_normal_trunc[1] = 9.661517044726127
RUN_011: test.x_normal_trunc[1] = 10.00965925367215
RUN_012: test.x_normal_trunc[1] = 9.952858400406081
RUN_013: test.x_normal_trunc[1] = 10.30478920309146
RUN_014: test.x_normal_trunc[1] = 10.27803333258882
RUN_015: test.x_normal_trunc[1] = 10.03792379373566
RUN_016: test.x_normal_trunc[1] = 10.20959040504398
RUN_017: test.x_normal_trunc[1] = 10.65930415393322
RUN_018: test.x_normal_trunc[1] = 10.06884635542625
RUN_019: test.x_normal_trunc[1] = 10.50899736993173
Logged data matches Monte-input data

1.1.3.3 Truncated by Specified Bounds

Distribution ~N(10,2) truncated directly to to lie within range [9.9, 11.0]
mc_var = trick.MonteCarloVariableRandomNormal ("test.x_normal_trunc[2]", 2, 10, 2)
mc_var.truncate(9.9,11, trick.MonteCarloVariableRandomNormal.Absolute)

m|

1.1.4 Truncated on Left Only

Distribution ~N(10,2) truncated on the left only at 9.9 should produce a distribution with values in the range [9.9, o)
mc_var = trick.MonteCarloVariableRandomNormal ("test.x_normal_trunc[3]", 2, 10, 2)

3
o
<
Q
=
—
-
c
>
Q
Q
—
()
(@]
=
—
©
©

—
=
Q
=
=
o
=]
—
(1)
(@)
Q
==
%
Q
=
V)
=2
()
Py
)
=
Q.
o
3
Z
o
=]
3
£
>
o
(%]
=X
=
—
D
N

il

1.1.5 Truncated on Right Only

Distribution ~N(10,2) truncated on the right only at 4.0 should produce a distribution with values in the range

7

(—0,4.0]
mc_var = trick.MonteCarloVariableRandomNormal ("test.x_normal_trunc[4]", 2, 10, 2)
mc_var.truncate_high(4, trick.MonteCarloVariableRandomNormal.Absolute)

1.1.6 Dispersion in Non-native units

Any distribution could be used for this verification; a normal distribution is chosen arbitrarily. The distribution
~N(10,2), with units of feet, assigned to a variable with native units of meters.

mc_var = trick.MonteCarloVariableRandomNormal ("test.x_normal_length", 2, 10, 2)
mc_var.units = "ft"

RUN_000 RUN_001 RUN_002 RUN_003 RUN_004
generated value 9.9548705 11.3248956 8.22502000 9.07821520 8.6123180
(ft) 07 06 5 16
converted value 3.0342445 3.45182818 2.50698609 2.76703999 2.6250345

—

1.1.7 Discrete Integer (Uniform Distribution)

Note that the range for a discrete variable includes the limits, in this case the distribution is ~U(0,2) which should
generate values 0, 1, or 2 for each run.

mc_var = trick.MonteCarloVariableRandomUniformInt ("test.x_integer", 1, 0, 2)

1.1.8 Discrete String (Uniform Distribution)

Three strings are provided from which to select randomly:

° “ABC”
° “DEF”
e ‘GHIKL

Note single quotes and double quotes are used to confirm the model supports both.
mc_var = trick.MonteCarloVariableRandomStringSet ("test.x_string", 3)

mc_var.add_string("\"ABC\""
mc_var.add_string("\"DEF\""
mc_var.add_string("GHIJKL™)

S~ ~—

Logged data matches Monte-input data

1.1.9 Discrete Boolean (Uniform Distribution)

mc_var = trick.MonteCarloVariableRandomBool("test.x_boolean", 4)

1.1.10 Python Code Injection

This type of variable provides the ability to assign a value to a variable that is the output of a function or script

1.1.10.1 Line of Code

If 2 arguments are provided to MonteCarloPythonLineExec, the arguments are interpreted as:
e [*argument is the assignment
o 2™ argument is the instruction

In this case, we multiply two previously generated values: test.x_integer, and test.x_uniform

mc_var = trick. MonteCarloPythonLineExec("test.x_line_command",
"test.x_integer * test.x_uniform")

10

(identical for all runs)

RUN 000 RUN 001 RUN 002 RUN 003 RUN 004

X_integer 1 2 2 2 0

x:unif%)rm 15928446165 18.442657443 18.579456199 18.472517374 16.235636965
product 15928446165 36.885314886 37.158912398 36.945034748 0
x_line_comand 15.928446 36.885314 37.158912 36.945034 0
(logged) 165 886 398 748

1.1.10.2 Execution of a Function

Where 1 argument is provided to MonteCarloPythonLineExec, it is interpreted as a command to be inserted into the
monte-input file. In this case, we have a C++ function defined:

void standalone function(double value)
{

std::cout << "\nStandalone function received a value of " << value
<< "\n";
x sdefine routine called = 1;

}

As a proxy for whether this was called during phase #2, two outputs are available:

¢ QOutput to screen
e The loggable variable x_sdefine routine called, which defaults to 0 and is only reset by this method.
mc_var = trick.MonteCarloPythonLineExec("test.standalone_function(test.x_normal)")
RUN_000: test.standalone_function(test.x_normal)
(identical for all runs)
RUN_000: Standalone_function received a value of 9.9545
RUN_001: Standalone_function received a value of 11.3249
etc.
test.x_sdefine_routine_called has a value of 1 for all runs.

1.1.10.3 Execution of File or Script

File Modified data/sample.py contains the following code:

test.x file command[0] = 1

test.x file command[l] = test.mc master.monte run number

test.x file command[2] = test.x file command[0] +
test.x file command[1]

As a proxy for whether this was called during phase #2, the x_file command values can be logged.
mc_var = trick.MonteCarloPythonFileExec("Modified_data/sample.py")

RUN_000: exec(open('Modified_data/sample.py').read())

(identical for all runs)

RUN_000 RUN 001 RUN 002 RUN 003 RUN_004

monte_run_number 0 1 2 3 4

11

file_command[0] 1 1 1 1 1
(logged)
file_command[1] 0 1 2 3 4
(logged)
file_command[2] 1 2 3 4)
(logged)

1.1.11 Extraction From File

This test only operates with a sequential file read, with each subsequent run reading from the next line of the file. See
section 5.2 for verification of random line selection logic.

3 values are extracted from columns 3, 2, and 1 in order from file Modified data/datafile.txt:

01 2 3 4
comment
10 11 12 13 14

<————————= <blank line>
20 21 22 23 24
<——mm——— <contains only white space>

30 31 32 33 34

Comments, blank lines, and lines containing only white-space should be skipped
When file-end is reached, the file should wrap back to the beginning
mc_var1 = trick.MonteCarloVariableFile("test.x_file_lookup[0]",

"Modified data/datafile.txt",

3)

mc_var = trick.MonteCarloVariableFile("test.x_file_lookup[1]",
"Modified data/datafile.txt",
2)

mc_var = trick.MonteCarloVariableFile("test.x_file_lookup[2]",
"Modified data/datafile.txt",
1)

RUN_000: test.x_file lookup[0] = 2

RUN_000: test.x_file_lookup[1] = 1

RUN_000: test.x_file_lookup[2] =0

RUN_001: test.x_file_lookup[0] = 12
RUN_001: test.x_file_lookup[1] = 11
RUN_001: test.x_file_lookup[2] = 10

RUN_002: test.x_file_lookup[0] = 22

RUN_002: test.x_file_lookup[1] = 21
RUN_002: test.x_file_lookup[2] = 20

12

run number x_file lookup[0]

0

1

2

x_file lookup[1]

13

x_file_lookup[2]

(line number)

1
2

3

5 12 1 10 2

6 22 21 20 3
7 32 31 30 4
8 2 1 0 1

Note - last column (line number) is added for a reference

1.1.12 Assignment of Fixed Value

3 options implemented:

e int value =7
e double value = 7.0
e std::string value = “7”

mc_var = trick.MonteCarloVariableFixed("test.x_fixed_value_int", 7)
mc_var = trick.MonteCarloVariableFixed("test.x_fixed value double", 7.0)

mc_var = trick.MonteCarloVariableFixed("test.x_fixed value_string", "\"7\"")
RUN_000: test.x_fixed_value_int=7

RUN_000: test.x_fixed_value_double = 7

RUN_000: test.x_fixed value_string = "7"

(identical for all runs)

All values are logged with value 7

1.1.13 Assignment of Semi-Fixed Value

A semi-fixed value is a value generated for the first run, and held at that value for all subsequent runs

This case takes the value of mc_varl, the local variable used in generating the values for test.x_file lookup[0]
The variable should therefore match that of test.x_file lookup/0] from RUN 000, and take this value for all runs.
mc_var = trick.MonteCarloVariableSemiFixed("test.x_semi_fixed value", mc_var1)

RUN_000: test.x_semi_fixed_value = 2

(identical for all runs)

Note— test.x_file_lookup[0] = 2 for RUN_000

Logged data matches Monte-input data

1.2 Reading Values From a File

As with the earlier case in section 5.1.11, the data is read from the file with the following contents.

14

01 2 3 4
comment
10 11 12 13 14

<————————= <blank line>
20 21 22 23 24
<——mm——— <contains only white space>

30 31 32 33 34

This test investigates the options for randomizing which values are drawn from the file.

1.2.1 Sequential Lines

With this option, each subsequent run reads the next line from the file, wrapping back to the top of the file when it
reaches the end. This has been investigated in section 5.1.11.

1.2.2 Random Lines with Linked Variables

This option uses the max_skip variable to allow some number of lines to be randomly passed over; the next run does
not need to read the next line.

Note — when multiple variables are being drawn from the same file, each variable must be given the same max_skip
value or an error will be flagged. It is not possible to draw two variables from different lines of the same file.

test. mc_master.set_num_runs(10)
mc_var = trick.MonteCarloVariableFile("test.x_file_lookup[0]", "Modified_data/datafile.txt", 3)
mc_var.max_skip = 3

mc_var = trick.MonteCarloVariableFile("test.x_file_lookup[1]", "Modified_data/datafile.txt", 2)
mc_var.max_skip = 3

mc_var = trick.MonteCarloVariableFile("test.x_file_lookup[2]", "Modified_data/datafile.txt", 1)
mc_var.max_skip = 3

run number X_file lookup[0] x_file lookup[l] x_file lookup[2] (line number) lines skipped

0 2 1 0 1

1 12 1 10 2 0
2 12 1 10 2 3
3 32 31 30 4 1
4 22 21 20 3 2
5 32 31 30 4 0
6 2 1 0 1 0
7 32 31 30 4 2
8 22 21 20 3 2
9 22 21 20 3 3

15

Note - line number and number of skipped lines added for clarification):

1.2.3 Random Lines with Independent Variables

Must use independent data files if variables are not to be correlated (i.e. all extracted from the same line). It is not
possible to have multiple variables drawn from different lines of one file.

mc_var = trick.MonteCarloVariableFile("test.x_file_lookup[0]", "Modified_data/single _col 1.txt", 0, 0)
mc_var.max_skip = 1

mc_var = trick.MonteCarloVariableFile("test.x_file_lookup[1]", "Modified_data/single_col 2.txt", 0, 0)
mc_var.max_skip = 2

mc_var = trick.MonteCarloVariableFile("test.x_file_lookup[2]", "Modified_data/single_col 3.txt", 0, 0)
mc_var.max_skip = 3

Each file contains a single column of data:
e single col 1.txt contains values 1 to 15
e single col 2.txt contains values 16 to 30
e single col 3.txt contains values 31 to 55

MONTE RUN file skip2/monte values all runs contains a summary of the assigned values. The line number and
number of skipped lines added for clarification:

run number x_file lookup[0] x_file lookup[1] x_file lookup[2] line numbers lines skipped
0 1 16 31 Lo
1 2 17 32 2 2 2 0 0 0
2 4 20 36 4 5 6 1 2 3
3 5 22 38 5 7 8 0 1 1
4 7 24 41 7 9 11 1 1 2

1.3 Distribution Analyses

For these distributions, we increased the number of data points to 10,000 to get a better visualization of the
distribution.

1.3.1 Uniform Distribution

Here we test the distribution of both continuous (left) and discrete (right) variables.

16

MonteCarlovariableRandomUniformint("test.x integer", 77001, 100, 100000)
MonteC i x_uniform", 77545, 100.0, 100000.0) T T T

250 F

°

x10%

1.3.2 Normal Distribution

For the analysis of the normal distribution, we start with 4 unique distributions, illustrated below:

. normal trunclOT", seed: 11122, mean: 0, std_dev: 5} HonteCarloVariableRandomiorma(test.x normal trunc 11 seed: 77546, mean: 75, td dev: 9

Monts x_normal_trunc(2I", seed: 60540, mean: 100, std_dev: 5) x_normal_trunc[31", seed: 77077, mean: 125, std_dev: 5)

Any normal distribution may be truncated. As we saw in section 5.1.3, a normal distribution can be truncated
according to one of 3 methods for specifying the range:

a prescribed range (4bsolute)
some number of standard deviations relative to the mean (StandardDeviation)

some a prescribed range relative to the mean (Relative)

For each of these options, there are 4 options for specifying how to truncate:

symmetric (about the mean or about 0) — uses truncate(...) with 1 numerical argument; the truncation is
applied within +- the value specified in the argument.

asymmetric, truncated on both sides — uses truncate(...) with 2 numerical arguments; the first argument
provides the left-truncation and the 2™ argument the right-truncation.

truncated on the left only — uses truncate _low(...) with 1 numerical argument specifying the left-truncation.

truncated on the right only — uses truncate high(...) with 1 numerical argument specifying the right-
truncation.

17

These 12 options will be investigated in more detail here, with graphical illustrations of the consequences of each.
For each case, two plots are shown:

1. the plot on the left is that of a distribution with no truncation applied

2. the lot on the right is that of the same distribution with the truncation applied.

1.3.2.1 Truncated by Prescribed Range

symmetric (about 0)
truncate(10, Absolute)

300 - 250
250
200 -
200 -
150
150 -
100 -
100 -
50 ~
50 ~
o — L n 1 °r . L
-20 —1‘5 -10 5 0 5 10 15 20 -10 -5 0 5 10
asymmetric, truncated on both sides
truncate(72.5, 85, Absolute)
300 - 2501
250 -
200
200
150 |-
150
100
50 - 50
0- . - of
60 70 80 90 100 72 74 76 78 80 82 84 86
truncated on the left only
truncate_low(90, Absolute)
300 - 250
250 -
200
200 -
150
150 -
100
100
50 50
0- - - 0
80 120 125

18

truncated on the right only
truncate_high(135, Absolute)

MonteCarioVariableRandomNormal("test._no

rmal_trunc[31", seed: 77077, mean: 125, std_dev: 5

1.3.2.2 Truncated by Difference from Mean

symmetric (about the mean)
truncate(10,Relative)

MonteCariovariableRandomNormal(“test.x

runclOT", seed: 11122, mean: 0, std dev: 5)

20 15 10 5

0 5 10 15 20

asymmetric, truncated on both sides

truncate(-2.5,10,Relative)

MonteCariovariableRandomNormal(“test.x_normal_truncl11", seed: 77546, mean: 75, std_dev: 5)

19

! . L . n
100 105 110 115 120 125 130 135

“tost.x_normal_trunc[3]" truncate_high(135, MonteCarlovariableRandomNormal.Absolute)

“tost.x_normal_truncl0]" truncate(10, MonteCarloVariablef

5t.x normal_truncl1]" truncate(-10.5, 10, MonteCarloVariableRandomNormal.Relative)

truncated on the left only

truncate_low(-10, Relative)

MonteCarioVariableRandomNormal(test._normal_truncl2]", seed: 60540, mean: 100, st dev: 5) test.x normal_truncl2]" truncate low(-10, MonteCarloVariableRandomNormal.Relative)

85 90 95 100 105 110 115 120

truncated on the right only
truncate_high(10, Relative)

MonteCarloVariableRandomNormal{test.x normal truncl3", seed: 77077, mean: 125, std_dev: 5) “tost.x normal_trunc(3]" truncate_high(10,

1.3.2.3 Truncated by Standard Deviations from Mean

symmetric (about the mean)
truncate(2, StandardDeviation)

MonteCarloVariableRandomNorm:

runclO", seed: 11122, mean: 0, std dev: 5)

20

asymmetric, truncated on both sides
truncate(-0.5, 2.0, StandardDeviation)

300 ~ 250 -
250 ~ 1
200 - 4
200 -
150 -
150 -
100
100 -
50 50 -
0~ : 0-
100 86
truncated on the left only
truncate_low(-2, StandardDeviation)
300 - 250 -
200 - 1
200 ~
150 ~
150 -
100 -
100 -
sol 50 -
0~ 1 1 T T i 0- ! 1 1 1 T - —>‘
truncated on the right only
truncate_high(2, StandardDeviation)
300 250
250
200 - 4
200
150 -
150
100 -
100
0 0~
100 100 105 110 115 120 125 130 135

21

