
1

Web Based Space Mission

Visualization System
Daniel O’Neil

daniel.a.oneil.@nasa.gov

Introduction

Free web based maps and digital globes enable people to explore area, plan trips, find a variety
of services, and get directions from point A to point B. We need a similar system for the Solar
System. For centuries, mechanical orreries enabled people to view and discuss the structure of

the Solar System and make predictions about eclipses and other celestial events. In the 21st
century, a web based orrery can serve as a tool for astronomers, educators, entrepreneurs,
mission planners, game developers, authors, and the general public. This proposal describes use
cases, functions and features, a development approach, and programmatic aspects of a Web-
based Mission Visualization System (WMVS).

Use Cases

An orrey is a solar system model that can be
viewed from several points of view and
manipulated to present the positional

relationships among celestial bodies. Figure 1
depicts a mechanical orrery. If we had a
general purpose web-based mission
visualization system what could we do with it?

The following subsections explain a variety of
use cases.

Education

Educators and students could explore the solar

system through the orrery part of the WMVS.
A user interface with time line and dial for
accelerating time could provide the capability to view celestial events such as solar eclipses,
visits from Halley’s comet, or the Tunguska event. Other user interface widgets could provide a

capability to measure distances between various celestial bodies and estimate travel times to get
from point A to point B at various velocities.

Science and Exploration Mission Visualization

Mission planners could use the WMVS to identify way points and orbital maneuvers. A 3D
model repository could enable planners to either select existing spacecraft models or upload a
new model. By assigning velocities to the mission plan and selecting a cockpit view, mission
planners could simulate the mission and see the Solar System from the perspective of the

spacecraft as it moves among the way points. Mission planners could save the way points and
make them public or limit access to a list of people by created an e-mail distribution list. Mission
plans saved for public viewing can educate the general public. A feature of the mission plans
could include rationale for maneuvers and way points to provide insight and a basis for

discussion. Space agencies could incorporate interactive mission visualizations into their
websites.

Figure 1 A 1766 Benjamin Martin Orrery, used at Harvard,

source: Wikipedia

mailto:daniel.a.oneil.@nasa.gov

2

Emerging Space Industries

Space entrepreneurs could use the WMVS to augment their business plans by depicting service
routes, traffic models, and service expansion. A digital globe would be better suited for depicting
commercial activities in Low Earth Orbit, such as satellite servicing, orbital debris collection, or
orbiting hotels. A WMVS would better serve depiction of commercial space travel to the Moon,

asteroid mining, or commercial transportation among space colonies. Space entrepreneurs could
use the 3D model repository to deploy spacecraft and the missing planning tools to depict
anything from assaying asteroids to deploying space infrastructure for communications, power,
and manufacturing. Corporations could integrate interactive space operations models into their

websites.

Serious Games

The entertainment industry could use the WMVS code base as a starting point to develop serious
games about space colonization, resource prospecting, Solar System wide economic simulations,
space piracy, space battles, and races through the Asteroid belt. An open-source license that

allows the use of the code in commercial products would encourage companies to adopt the
vetted technically accurate orrery. As the serious games flourish, the companies can give back to
the open source repository by providing user interface widgets, 3D models, and an improved
look-and-feel of the user interface.

The Web Based Orrery

The Use Cases identified a few WMVS functions including mission planning tools, various

camera views, a time line, a time acceleration widget, and a 3D model repository. Features of the
WMVS include native execution with a modern web browser, an Application Programming
Interface (API) the enables the development of WMVS based applications, and an open source
development approach that enable contributions from everyone. The following subsections

provide details about these functions and features.

Native Execution within a Web Browser

The capability to use the WMVS without the requirement to download a thick-client, install a
plug-in, or update a virtual machine will make the system more attractive to the casual user.
Programming language such as JavaScript and WebGL execute natively within popular web
browsers and take advantage of graphics processors.

Planets, Moons, and Asteroids

An ideal web-based orrery would include all of the known planets, moons, and asteroids;

however, rendering detailed models of the 600,000 known asteroids and objects within the rings
of Saturn could overwhelm a web browser. Menu items or check boxes could provide a
capability to configure orrery so that it presents the most interesting celestial bodies to the
individual. One website visitor may want to view Earth and a selected set of Potentially

Hazardous Asteroids (PHA). Another visitor may want to view Jupiter and its moons.

3

Level of Detail

Managing level of detail can reduce the load on the graphics processors. From a distance, the
asteroid belt could appear as particles and the planets could be rendered with procedural textures.
As the point of view moves closer to a planetary surface, a texture library could provide a more
technically accurate texture map.

Asteroids that have shape files could have corresponding 3D models. From a distance, a generic

ovoid shape could represent the asteroid. As a camera moves closer to the asteroid, a more
accurate 3D model could be substituted for the generic model.

Future Functions

Initially, the WMVS ought to focus on a few functions and features that support education and
presenting mission concepts. As the project attracts more developers, additional functions and
features could be integrated; the following subsections identify three functions that could wait

for a later release.

 Particle Dynamics – depicting engine plumes and dust plumes could wait. An initial
implementation could be to depict the asteroid belt from a distance.

 Gravitational Effects – Initially, the orbits could simply propagate the orbital elements.

Periodically, an interface could update the orbital elements from JPL and other
organizations that track celestial bodies. A Future version of the system could address
gravitational effects that perturb orbits.

 Surface Landing – Landing on the planetary surface ought to be done with a digital globe.

A future version of the WMVS could include interfaces to digital globes such as NASA
World Wind, Google Earth, and Cesium to hand-off a mission visualization. The orrey
could focus on the in-space part of the mission and the digital globe could depict the

landing. A website could include frames to present the overview with the orrery and the
surface landing with a digital globe.

Time and Navigation Widgets

User interface widgets for managing time and selecting points of view will prevent the visitor
from getting lost in the orrery. An initial set of widgets include:

 Time Line – A configurable timeline could present minutes for an approach to an
asteroid, weeks for the depiction of a spacecraft conducting an orbital maneuver, months

for a mission to Mars, years to depict comet and meteor trajectories, centuries or
millennia to show long term behaviors of the Solar System.

 Time Accelerator - A widget, such as a dial or slider can provide a visitor with a

capability to accelerate a mission visualization. Depending on the implementation orbital
propagator(s), time acceleration could introduce errors.

 Way Point Selection – Another method for time acceleration could be a widget or menu
for selecting previously defined way points. When a visitor selects a way point, the

system could reset the orbital propagator(s) to mitigate the accrual of errors.

 Camera and View Selection – A function for establishing and pointing cameras could
enable the presentation of a mission concept from several perspectives. When a visitor
selects a spacecraft model the system could establish a camera at the bough of the ship to

4

depict the spacecraft’s point of view. If the mission involves multiple spacecraft, each
ship could have a selectable camera.

Mission Planning

The Use Cases section describe how mission planners and space entrepreneurs could use the
mission planning functions to establish way points to present a mission plan. Mission planning

widget and screens include:

 Map Views – Working in 3D can be difficult because the two-dimensional computer
monitor is presenting a three dimensional volume. Selectable 2D map views can simplify

the process of placing way-points. A visitor could select two map views and place the
point on those two views to generate the 3D location. The map views ought to include
selectable center points and distance scales. A visitor could start with Earth as a center
point and after establishing a few points, he or she could select Mars as the center point to

establish additional way points.

 Way Point Definition – A way point identifies a location in space where a spacecraft will
start, travel through, or complete a mission. Way points could be represented with a
variety of user selectable colored 3D icons. When creating a way point, a visitor could

enter paragraphs to explain the rationale for placement and links to supporting
information.

 Trajectory Trace Path – As a mission simulation executes, a spacecraft moves along a
defined path through a set of way points. A detailed analysis of orbital trajectories could

be done beforehand with design and analysis tools like NASA’s General Mission
Analysis Tool (GMAT) and Analytical Graphics Incorporated’s System Tool Kit (STK).
The WVMS could offer a simple orbital propagator to move a spacecraft along a
trajectory provided that the visitor supplies the orbital elements for each leg of a mission

plan. If the visitor does not supply the orbital elements, then the WVMS could offer
straight lines or Bezier curves between way points. During the simulation, the WVMS
could trace the trajectory paths with visitor specified colors, thicknesses, and line types.

Model Library

A model library could include 3D geometric meshes of asteroids, spacecraft, and other objects.
Features of the model library include a 2D image, description, and dimensions of the models in

the library.

 Import Articulated 3D models – a spacecraft model may need to reconfigure itself during
a mission, for example, it could deploy solar panels and antenna. Computer modeling
programs, such as Blender, provide a capability to create models with rigs and articulated

movements. The import function ought to support a file format that includes the rig and
articulations. The mission planning way point editor could include an option to activate
the model’s articulated behavior.

 Import Texture Maps – The file format of the 3D model ought to include texture maps so

that the mission planner does not have to manipulate the texture maps within the WVMS.
There exists a variety of powerful free 3D modeling programs, Blender for example,
which can export a COLLADA file that includes texture maps.

5

Application Programming Interface

The public WVMS ought to provide a core set of functions and features with an Application
Programming Interface (API) that enables developers to extend system capabilities and to create
new applications that use the WVMS code base. The following subsections describe interfaces to
external databases with data about celestial bodies, usage of existing computer graphics code

libraries, and access to the Solar System scene-graph.

Interfaces to Celestial Body Databases

The Jet Propulsion Laboratory Near Earth Objects (NEO) Project Office provides access to a
database of orbital trajectories for PHAs. The Asterank website provides Representational State

Transfer (REST) protocol interface to its database. The WVMS API ought to provide functions
that for calling these external databases and other sources of celestial body data. Considering that
accessing these external sources during a simulation could slow down the system, the WVMS
may need a local database that is periodically updated as JPL and other organizations update

orbital element data. These external database data request functions could provide developers the
capability to get the latest data during an initialization phase.

Interfaces to JavaScript & WebGL libraries

Instead of creating a new 3D graphics code library, the WVMS ought to build upon an existing
code library, such as X3Dom or Three.js. If the development team can identify multiple
compatible 3D graphics, data visualization, and user interface code libraries, these API functions
could provide a capability to program at a higher level. Consider the mission planning tools,

there could be calls to three or four different code libraries, a WVMS API function enable the
developers to work in an object oriented fashion to establish map views, way point editors, and
trajectory trace paths.

Solar System Scene Graph

A scene-graph is a data structure that defines an integrated collection of 3D objects. A Solar

System scene-graph at the heart of the orrery would include the planets, moons, and asteroids. A
user interface to configure the scene-graph to add or remove objects. Functions in the WVMS
API could enable a code developer to navigate, read, or modify the scene-graph for the purpose
of adding data or updating data visualization overlays.

Celestial Object Builder Utility

A future set of functions could provide a capability to build simple planetoid models. Presently,
only a few shape files of asteroids exist. To provide a more sophisticated model of an asteroid
than the simple ovoid shape, the celestial object builder utility functions could enable a visitor

code developer to import 3D models and specify landing spots or locations of desirable
resources.

6

Skills to Components Mapping

A web based mission visualization system will have many parts and require a variety of skills to
implement the parts. The following table maps the needed component development to the types
of skills needed to implement the components.

Application

Component

Needed Skill(s) Rationale

Orbital
Dynamics
Functions

Orbital dynamics
expert, Physicist,
or Mathematician

Kepler’s equations specify the motion of celestial bodies.

Required skills involve translating equations into code for a
library.

Thrust equation
and orbit

transfer
functions

Aerospace
engineer,

Physicist, or
Mathematician

Equations for modeling thrust and knowledge about orbital

maneuvers, such as the Hohmann transfer enable the

development of spacecraft mission simulations. Needed skills

involve translating various maneuvers into algorithms that a
programmer can implement as a code library.

Solar System

Model or
Orrery

Computer graphics
programmer and

3D graphics
modeler. Physicist

consultant

A reusable model of the solar system, implemented as a

hierarchical scene-graph with rotating texture mapped planets
serves as the mission visualization environment. Required

knowledge and skills include 3D graphics programming, 3D

modeling, and texture mapping. Consulting with a Physicist

will help ensure that planets are spinning correctly.

Way-point

mapping
visualization

Computer graphics
programmer

Waypoint and orbital trajectory visualization will result from

mission planning. Required knowledge involves an understanding
of 3D computer graphics algorithms and scene-graphs.

Interactive
Visualization

Widgets

User Interface
Designer and

computer scientist

Widgets, such as menus, dials, sliders, and timelines, will
enable an end-user to select camera views, accelerate or

decelerate the simulation, select a point of time within a

mission, and manipulate the point of view. Skills include

designing the graphical user interface and mapping the

controls to the appropriate functions within the application.

Model Library

Graphics expert(s)
in 3D modeling

and computer
scientist

A 3D model library will enable mission designers to upload

or select models for mission visualizations. Required skills

include some user interface design, file management code

development, and functions to integrate the models into the
orrery scene-graph.

Application
Programming

Interface library

Computer scientist
and technical

writer

An API library enables experts to utilize the orbital dynamics,
thrust, and orbit transfer functions to create mission visualizations.

Required skills involves writing descriptions of the functions and
producing web documentation.

Orbital element
data access

functions

AJAX, RPC, or
REST code
developers

Accessing orbital element data about asteroids, planets, and other
celestial bodies requires occasional remote access to databases.

Required skills involve remote access protocols, such as
Representational State Transfer (REST).

Mission
Planning User

Interface

Graphics expert(s)
in 2D and 3D

Mission planning involves 2D and 3D views of the solar system,
way-point specification, and orbital maneuver selection. Required

skills involve user interface design, translating 2D map way-points
to 3D points within the scene-graph, and generating scripts of

orbital maneuvers that move 3D models of spacecraft.

7

Development Approach

An open source development approach can improve the chances of wide-spread adoption of the
WVMS. Establishing the credibility of the system requires involvement of world-class orbital
dynamics experts, mission planners, and code developers. The following list of features describe

a development approach to engage experts through-out NASA, the aerospace industry, and the
world of independent code developers.

 Agency Wide Team – Establishing an agency wide team will ensure wide-spread adoption

within the agency and build a community with expertise in orbital dynamics, spacecraft
design, mission planning, 3D graphics, and web-app programming

 Verifying and Validating Orbital Propagator(s) - Vetting the orbital propagators is
essential to establishing credibility. Reaching out to the general aerospace and

astronomical communities to establish independent review teams can ensure that the
orbital propagators have been properly implemented.

 Verify and Validate Code – Open source development projects typically use bug tracking
systems and volunteers to work out the bugs. Establishing a development team for core

functions and features could lead to a more formal development and review process that
leads to better quality software. As the volunteer workforce builds upon the core code
base, the core team could establish regression test procedures and discussion forums for
code walkthroughs to verify the code.

 Free Open Source Code – Selecting a flexible open-source code license could motivate
the commercial game industry to build upon the code base and contribute to it. The
license ought to allow usage of the code base in commercial products. The terms of the

agreement ought to include a requirement that companies that benefit from the code base
contribute some code or improvements.

 Engage Programming Community – Establishing contests and prizes are ways to attract
independent developers and small businesses. Writing and presenting conference papers

provides visibility for the project and can attract students who are looking for
independent study projects. The following list provides three examples of forums for
engaging the programming community.

o TopCoder – With a world-wide community of over 300,000 programmers and a

standardized contest driven life-cycle, TopCoder could provide a development
team to jumpstart the project

o International Space Apps Challenge – An week-end challenge that attracts
thousands of independent programmers. A set of challenges could request

software objects that perform specific functions or provide particular features.
o Datanauts – A data visualization team that builds reusable components for NASA

open source projects.
o Simulation Conferences – Presenting the WVMS progress at simulation

conferences could attract independent developers or companies to the project.

Schedule

Milestones for a software project include requirements definition, architectural design, user

interface mockups or wireframes, code development, demonstrations, testing, validation, etc. A
detailed schedule could be developed by the core development team.

8

Cost Expenses may include charge codes for civil servants, prize money for contests, and

grants to universities. If implemented as Datanaut and Space Apps challenges, the costs will be
the civil-servant time to provide technical guidance and socialize the application. A detailed cost
breakdown can be developed by the core development team.

