e
fmdtools

Intro to resilience modelling, simulation, and
visualization in Python with fmdtools.

Author: Daniel Hulse

Version: 2.0-alpha

Overview

e Overview of fmdtools
o Purpose

o Project Structure
o Common Classes/Functions
o Basic Syntax
e Coding Activity
o Example model: examples/pump/ex_pump.py

o Workbook: examples/pump/Tutorial unfilled.ipynb
= Model Instantiation

= Simulation

= Visualization/Analysis

http://127.0.0.1:10411/C:/Users/dhulse/Documents/GitHub/fmdtools/examples/pump/ex_pump.py
http://127.0.0.1:10411/C:/Users/dhulse/Documents/GitHub/fmdtools/examples/pump/Tutorial_unfilled.ipynb

Prerequisites

e |deally, some pre-existing Python and Git knowledge

e Anaconda distribution
o |deally this is already set up!

o Download/install from: https://www.anaconda.com/products/individual

e A gitinterface
o Github Desktop (graphical git environment)

o git-scm (stand-alone CLI)

https://www.anaconda.com/products/individual
https://desktop.github.com/
https://git-scm.com/

Motivation: Modelling System Resilience

Resilience means taking a dynamic understanding of risk and safety

Prevention Recovery

Nominal Scenario

|
|
I
|
-
-
—— I
—— I
|
~~~ I
-

~~

Nominal Performance
Hazard )
Expected Resilience over a set of . \\\ N i
Resilience: hazardous scenarios \

Resilience \
&\ No Recovery

! Faulty Performance
I
Fault Time

Yodo, N., & Wang, P. (2016).



Why is Resilience Important?

Resilience means taking a dynamic
understanding of risk/safety
Considering resilience is important when
Risk Outcomes our system has dynamic attributes, e.g.:

- The system state changes over time

- (e.g., position, velocity, etc)
- We can control this state

- (e.g., operators, autopilot)
Because we can use it to determine how to
Unsafe control the system to a safe outcome in

Safe Disruptions

.*
.
*
*
.
.
o
.

®

«®
L 3
.
.
.
.
.
.
.
.
*
*

Robustness Safety

Threshold .7 Disruptions unsafe circumstances and what
“““““ design/operational features we need to
Recovery.Time Safety enable this control
Threshold

.
.
,e*




Enabling proactive design process

ldea: the system should be resilient-hy-design

Concept Design Embodiment Design Implementation

Reactive Choose concept Design system Retrofit for resilience

Design

Integrate resilient

Proactive / Establish resilience
features.in dasigg3

DeSig ? approac ?

Fuel In

Inlet with 1
Aumos: Ram Fan
P Recovery [
HPC —#{Combustor(—¥ H

Image 1& 2 Credit: User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
Image 3 Credit: https://en.wikipedia.org/wiki/File:General _Electric_Passport.jpg

e Especially relevant to new systems when we don’t have data



Why fmdtools? Possible Competitors:

e Uncertainty Quantification tools: (e.g. OpenCossan)
o Doesn't incorporate fault modelling/propagation/visualization aspects

e MATLAB/modelica/etc. Fault Simulation tools
o Rely on pre-existing model/software stack--Useful, but often difficult to
hack/extend (not open-source)

e Safety Assessment tools: (e.g. Alyrica, Hip-Hops)
o Focused on quantifying safety, not necessarily resilience

o As a result, use different model formalisms!



Why fmdtools? Pros:

e Highly Expressive, modular model representation.

o faults from any component can propagate to any other connected component
via undirected propagation

o highly-extensible code-based behavior representation

o class structure enables complex models representing human behavior and
systems of systems

e Research-oriented:
o Written in/relies on the Python stack

o Open source/free software

e Enables design:
o Models can be parameterized an optimized!

o Plug-and-play analyses and visualizations



Why not fmdtools? Cons:

e You already have a pre-existing system model

o fmdtools models are built in fmdtools

o if you have a simulink/modelica model, you may just want to use built-in tools
e You want to use this in production

o fmdtools is Class E Software and thus mainly suitable for research (or, at least,
we don't gaurantee it)

o Somewhat dynamic development history



What is fmdtools? A Python package for design,
simulation, and analysis of resilience.

pkg module organization )

fmdtools
define | I
—| —| —| sim analyze
common parameter state
propagate scenario result graph
rand mode time I I I
approach search plot tabulate
block flow model '.
1
1
1 1
1 1 \
5 dule f I I \
- . . Module for simulating resilience
Module.for defm_mg resilience models and their models in different cgnﬁgurations Module for analyzing resilience
respective building blocks (scenarios, etc). simulation results




What is fmdtools? Repo Structure

Repository (https://github.com/nasa/fmdtools/)

/fmdtools : installable package

/examples : example models with demonstrative notebooks and tests
/docs : resources for documentation

/tests : stand-alone tests (and testing rigs)

README.md : Basic package description

CONTRIBUTORS.md : Credit for contributions

requirements.txt : List of requirements

.. and other configuration files

11


https://github.com/nasa/fmdtools/
https://nasa.github.io/fmdtools/

Activity: Download and Install fmdtools

e repo link: https://github.com/nasa/fmdtools/

® set up repo:
o create path/to/fmdtools folder for repo
= (usually in /documents/GitHub )

o clone git into folder:
B git clone https://github.com/nasa/fmdtools.git

= can also use webpage

e package installation:
o Open Python from anaconda (e.g., open Spyder)

o |nstall with pip install -e /path/to/fmdtools

12


https://github.com/nasa/fmdtools/

Analysis Workflow/Structure

System Model File: model.py
- State Classes

- Flow Classes

- Function Classes

- Mode Classes

- Model Classes

- Parameter Classes

= System ==

- etc...

Model, FxnBlock, Flow, State...

Analysis Script: Script.py or Notebook.ipynb
Model instantiation (e.g. mdl = Model())

Simulation

- result, history = propagate.one_fault(mdl, fault, t) ...

Results processing and visualization

- ModelGraph(mdl).draw()
- plot.hist(history)

Definition Packages
/define/block.py,
/define/state.py
/define/flow.py
/define/model.py

/define/mode.py, ...

- etc...
SampleApproach, hist(), ModelGraph,

one_fault(), etc...

fmea(), etc...

Simulation Modules
/sim/propagate.py
/sim/approach.py

/sim/search.py

Analysis Modules
/analyze/plot.py

/analyze/graph.py
/analyze/tabulate.py

13



Defining a Model

e What do we want out of a model?
o What behaviors and how much fidelity do we need?

o What functions/components and interactions make up the system?
= Single function or multiple functions?

= |s it controlled? Are there multiple agents?

e What type of simulation do we want to run?
o Single-timestep vs multi-timestep vs network

e What scenarioss do we want to study and how?
o Failure modes and faulty behaviors

o Disturbances and changes in parameters

o What are the possible effects of hazards and how bad are they?
= By what metrics?

14



Defining a Model

-

design model

- F-------------1

Model: Agglomeration of -7 import EE 1
. . r —’I EE_1 Voltage = Input_Voltage I *
Functions, Flows, and Hazard Metrics il fauits: inpusaiane =0 |1 N
i |
— : EE 1 "IN

.- model class diagram | = E | '

I EEEEES T IL ! EE 2 Voltage = EE 1 Voltage " a :

I Wire Model I 1| EE 1 current = EE 2 Current " b I

| ) I 1] if EE 2 current >10, a=0

1 FFunctions: Import EE, Transport EE, Export EE I 1] faults: a—g=t=o

j lows: EE 1, EE 2 1 —

J [Braph, Bipartite Graph 1 EEQ |

| : : 1! - : : )

j [Fost = 10 "Nominal Power - EE 2 Current " Voltage I : FEo Curm tage/R : Fu nction: Defines h|gh-level

I 1 I 1| faults: R=0, R=inf I . :

e e ——— | — ] system behaviors as well as failure

VAl vV ] vV modes and component architectures
Import EE Transport EE Export E
Flows: EE_A1 Flows: EE_1, EE_2 Flows: EE 2
States = Voltage_In, Current_In Components: Wire

. Faults: Voltage_In =Q b

States: R

EE_1 Voltage = Input_Voltage
Currentiln = EEiZ Current

State: Entries that define

)

Wire behavior(EE 1, EE 2)

' EE2_Current = EE 2_Volta

Wire

Voltage

States: a, b

Function/Flow state

Current

Faults: a=0, b=0; a=0, b=inf

EE 2 Voltage = EE 1 Voltage™a

EE 1 Current = EE 2 Current™
if EE3 current > 10, a=0, b=0

Voltage
Current

Flow: Data Structures
(inputs/outputs) that connect Functions

Component: sub-behavior

internal to a Function with its own
behaviors and properties, etc

15



Demo Model Activity: examples/pump/ex_pump.py

Notice the definitions and structure:

e States: WaterStates , EEStates, SignalStates
e Flows: Water, EE, Signal

e Functions: ImportEE , ImportWater , ExportWater , MoveWater , ImportSignal
o Flows

o Modes (e.g., ImportEEMode , ImportSigMode )
= Mode probability model

= Actual modes in faultparams entry
o others attributes, e.g., Timer
e Model: pump connects functions, flows, and defines end_classification

e Parameter: pPumpParam defines values we can change in the simulation

16



More Resources for Model Definition

e Note the docs for model definition in
https://nasa.github.io/fmdtools/docs/fmdtools.define.html

e Other examples also can be helpful:
https://nasa.github.io/fmdtools/docs/Examples.html

17


https://nasa.github.io/fmdtools/docs/fmdtools.define.html
https://nasa.github.io/fmdtools/docs/Examples.html

Notebook Activity:

Open /examples/pump/Tutorial_ unfilled.ipynb :

e |nstantiate the model
© mdl = Pump()

e Explore structure
o Try different parameters!

o Change things!
What does the model directory look like?
© dir(mdl)

18



Simulation Concepts: Static/Undirected Propagation

new value in function
results in new flow values

FIu-wL Fan ow 14 Fxnzlll “Flow 1{ Fxn 2 |
Fxn 1 '* .f' Fxn 1 D
..-\ I.r FIl:rw4 T Flow 7 Fll:rw4_

4
FIDW\% _.F_I?“w ? l Fxn 3_ :: Flow 2 Flow 3 @ Lr: F|uw2 Flow 3 . Fan 3
I: Fxn 4 | o .

A
ow 1 ow 1 ow 1
lowr 4 — low 4 low 4
Floww 3 Floww 3 i Floww 3
Flow 2 | Fxn 3 { Flow 2 ‘ Fxn 3 Flowr 2 @

new value in adj function function updated no new values = done

update all functions adjacent functions updated

In a single timestep:

e Functions with static_behavior() methods simulate until behaviors converge
(i.e., no new state values)

e Functions with dynamic_behavior() run once in defined order o



Simulation Concepts: Propagation over Time

Time | 1 2 3 4 5 G 7 - | end
. ——lterat
fxn,fault,t|mnat_1].mS
- I_I -
Inject fault at time Update model at time

L SFlow 1 Fxn 2 1 ow 1{ Fyn 2

n Fan o

e 7 Flowd low 4

: Flow2 Flow3 Flow2 Flow3 @

Model Update history at time

Fxn 1: | Faults | nom| fault| fault] fault| fault| fault| fault| nom| nom

Flow1: [Value 1] 1 ] 0 0 Q ] 0 1 1

e Model increments (simulated + history updated) over each time-step until a
defined final time-step or specified indicator returns true.



Simulation Concepts: Types of Simulations

Nominal performance

Performance over propagate.nominal()

i  Nominal Scenario Sampling
a set of possible

level 1 level 2 level 3 Resilience Triangle

operational o T s A = Ti
parameters | = b= Performance Event ecoviry ime
propagate. — l 100% = N _
nominal_approach() Fmdtools Fault Sampling Fesl'l'en;e to 3 single
ault or hazar

N mode 1 [ N/ TN/ TN propagate.one_fault()
Resilience overa  _| mode 2 N~ i propagate.sequence()
set of fault modes
propagate.approach() mode 3 [ &/ I

time 1 time 2 time 3 0%

fault scenarios

|

Resilience to a set of fault
modes over a set of
operational parameters
propagate.nested_approach()

For more info, (syntax/arguments), see documentation for fmdtools.sim.propagate


https://nasa.github.io/fmdtools/docs/fmdtools.sim.html#fmdtools-sim-propagate

Simulation Concepts: Sampling Approaches

These classes define multi-run simulations which can be used to quantify uncertain
performance/resiliences:
e SampleApproach: Which faults to sample and when

o Relies on mode information encoded in the model

o Simulated using propagate.approach()
e NominalApproach: Nominal parameters or random seeds to sample

o Can be simulated in propagate.nominal_approach()

o Can be simulated in conjunction with faults using propagate.nested_approach

See docs for: fmdtools.sim.approach

22


https://nasa.github.io/fmdtools/docs/fmdtools.sim.html#module-fmdtools.sim.approach

Simulation Concepts: Things to Consider

Static/Dynamic propagation: How function states propagate to each other in a single
time-step and multiple time-steps

e Undirected graph representation—states can effect all other connected states, and
vice versa, in any order

Stochastic Propagation: Whether and how stochastic states are instantiated over time

e e.g.do we run with the “default” values of parameters, or do we sample from a
random number generator?

Breadth of Scenarios: How hazards are represented as discrete scenarios to simulate

e What set of joint faults do we use? How many times are sampled?

e Operational scenarios and joint operational/fault scenarios

23



Activity: Simulate the Model

Run fault propagation methods:

® propagate.nominal()
® propagate.one_fault()

® propagate.approach()

What do the results look like? Explore data structures:

® analyze.result.Result

® analyze.result.History
Explore:

e What happens when you change SampleApproach parameters?
e What happens when you change Model parameters?

e How do these methods compare in terms of computational time?

24



Analysis Modules

plot.py
Behavioral/Statistical Plotting

- hists(): Plots behavior of given states over
time in a set of scenarios

- metric_dist()/_from(): Histograms of
modelled metrics

- nominal_vals_1d/2d/3d(): Simulation
metric(s) in terms of input parameters

- nominal/nested_factor_comparison():
Comparison of simulation statistics over
given factors

matpl:tlib

graph.py
Visualization of simulation results on the
model graph
- Graph: Base class for graph display
methods, with methods like
- draw(): Show graph at state
- draw_from(): shows graph statesat
a given time-step

-ModelGraph, ASGGraph, etc: Subclasses
that create graph structures for specific
fmdtools classes

+@. NetworkX

%® Network Analysis in Python

tabulate.py

Display and export of simulation results as

tables

- fmea(): FMEA-like assessment with faults,
probabilities, and costs.

- metricovertime(): total metric, rate, and
expected metrics of scenarios over time

- nominal/nested_factor_comparison():
Table of simulation statistics over factors

- others...

!l pandas

result.py

Logging, processing, and save/load for simulation results

- Result: Class for storing results from a simulation specified in desired_result argument, e.g.:

- endclass (from find_classification)
- graph (graph view)
- model values (user-defined)

- History: Class for storing simulation histories specified using track argument

See docs for: fmdtools.analyze

25


https://nasa.github.io/fmdtools/docs/fmdtools.analyze.html

Analysis Activity

Visualize the results:

e Show model graph
e Show nominal performances
e Show performances in a nominal scenario

e Make a scenario-based fmea
Explore:

e How can you show only the parameters you want? Or change the formatting?
e What does the behavior under other faults look like?

e What other analyses can you perform with these results?

26



Conclusions/Summary

e fmdtools is an environment for designing resilient systems
o /define enables model definition

o /sim is used to define simulations
o /analyze Is used to analyze and visualize simulation results

e | hope you agree that it has some powerful features!
o Modelling expressiveness and clarity

o Types of simulations that can be run

o Powerful but easy-to-leverage plug-and-play analyses

27



Further Reading/Links

 More advanced topics (see examples):
o Search and optimization

o Human/Al Modelling

o Systems-of-Systems modeling
o Modelling Stochastic Behavior
o ...and more

e Model Development Guide: Has best practices for developing models in a strategic
way (especially helpful for compelx models)

e Overview Paper:
o Hulse, D., Walsh, H., Dong, A., Hoyle, C., Tumer, I., Kulkarni, C., & Goebel, K.
(2021). fmdtools: A fault propagation toolkit for resilience assessment in early

design. International Journal of Prognostics and Health Management, 12(3). >


https://nasa.github.io/fmdtools/docs/Examples.html
https://nasa.github.io/fmdtools/docs/Development%20Guide.html#model-development-best-practices
http://papers.phmsociety.org/index.php/ijphm/article/view/2954

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

