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Overview

e Overview of fmdtools
o Purpose

o Project Structure
o Common Classes/Functions
o Basic Syntax
e Coding Activity
o Example model: examples/pump/ex_pump.py

o Workbook: examples/pump/Tutorial unfilled.ipynb
= Model Instantiation

= Simulation

= Visualization/Analysis


http://127.0.0.1:10411/C:/Users/dhulse/Documents/GitHub/fmdtools/examples/pump/ex_pump.py
http://127.0.0.1:10411/C:/Users/dhulse/Documents/GitHub/fmdtools/examples/pump/Tutorial_unfilled.ipynb

Prerequisites

e |deally, some pre-existing Python and Git knowledge

e Anaconda distribution
o |deally this is already set up!

o Download/install from: https://www.anaconda.com/products/individual

e A gitinterface
o Github Desktop (graphical git environment)

o git-scm (stand-alone CLI)


https://www.anaconda.com/products/individual
https://desktop.github.com/
https://git-scm.com/

Motivation: Modelling System Resilience

Resilience means taking a dynamic understanding of risk and safety
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Why is Resilience Important?

Resilience means taking a dynamic
understanding of risk/safety
Considering resilience is important when
Risk Outcomes our system has dynamic attributes, e.g.:

- The system state changes over time

- (e.g., position, velocity, etc)
- We can control this state

- (e.g., operators, autopilot)
Because we can use it to determine how to
Unsafe control the system to a safe outcome in
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Enabling proactive design process

ldea: the system should be resilient-hy-design
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Image 1& 2 Credit: User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
Image 3 Credit: https://en.wikipedia.org/wiki/File:General _Electric_Passport.jpg

e Especially relevant to new systems when we don’t have data



Why fmdtools? Possible Competitors:

e Uncertainty Quantification tools: (e.g. OpenCossan)
o Doesn't incorporate fault modelling/propagation/visualization aspects

e MATLAB/modelica/etc. Fault Simulation tools
o Rely on pre-existing model/software stack--Useful, but often difficult to
hack/extend (not open-source)

e Safety Assessment tools: (e.g. Alyrica, Hip-Hops)
o Focused on quantifying safety, not necessarily resilience

o As a result, use different model formalisms!



Why fmdtools? Pros:

e Highly Expressive, modular model representation.

o faults from any component can propagate to any other connected component
via undirected propagation

o highly-extensible code-based behavior representation

o class structure enables complex models representing human behavior and
systems of systems

e Research-oriented:
o Written in/relies on the Python stack

o Open source/free software

e Enables design:
o Models can be parameterized an optimized!

o Plug-and-play analyses and visualizations



Why not fmdtools? Cons:

e You already have a pre-existing system model

o fmdtools models are built in fmdtools

o if you have a simulink/modelica model, you may just want to use built-in tools
e You want to use this in production

o fmdtools is Class E Software and thus mainly suitable for research (or, at least,
we don't gaurantee it)

o Somewhat dynamic development history



What is fmdtools? A Python package for design,
simulation, and analysis of resilience.
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What is fmdtools? Repo Structure

Repository (https://github.com/nasa/fmdtools/)

/fmdtools : installable package

/examples : example models with demonstrative notebooks and tests
/docs : resources for documentation

/tests : stand-alone tests (and testing rigs)

README.md : Basic package description

CONTRIBUTORS.md : Credit for contributions

requirements.txt : List of requirements

.. and other configuration files
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https://github.com/nasa/fmdtools/
https://nasa.github.io/fmdtools/

Activity: Download and Install fmdtools

e repo link: https://github.com/nasa/fmdtools/

® set up repo:
o create path/to/fmdtools folder for repo
= (usually in /documents/GitHub )

o clone git into folder:
B git clone https://github.com/nasa/fmdtools.git

= can also use webpage

e package installation:
o Open Python from anaconda (e.g., open Spyder)

o |nstall with pip install -e /path/to/fmdtools

12


https://github.com/nasa/fmdtools/

Analysis Workflow/Structure

System Model File: model.py
- State Classes

- Flow Classes

- Function Classes

- Mode Classes

- Model Classes

- Parameter Classes

= System ==

- etc...

Model, FxnBlock, Flow, State...

Analysis Script: Script.py or Notebook.ipynb
Model instantiation (e.g. mdl = Model())

Simulation

- result, history = propagate.one_fault(mdl, fault, t) ...

Results processing and visualization

- ModelGraph(mdl).draw()
- plot.hist(history)

Definition Packages
/define/block.py,
/define/state.py
/define/flow.py
/define/model.py

/define/mode.py, ...

- etc...
SampleApproach, hist(), ModelGraph,

one_fault(), etc...

fmea(), etc...

Simulation Modules
/sim/propagate.py
/sim/approach.py

/sim/search.py

Analysis Modules
/analyze/plot.py

/analyze/graph.py
/analyze/tabulate.py

13



Defining a Model

e What do we want out of a model?
o What behaviors and how much fidelity do we need?

o What functions/components and interactions make up the system?
= Single function or multiple functions?

= |s it controlled? Are there multiple agents?

e What type of simulation do we want to run?
o Single-timestep vs multi-timestep vs network

e What scenarioss do we want to study and how?
o Failure modes and faulty behaviors

o Disturbances and changes in parameters

o What are the possible effects of hazards and how bad are they?
= By what metrics?

14



Defining a Model
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Demo Model Activity: examples/pump/ex_pump.py

Notice the definitions and structure:

e States: WaterStates , EEStates, SignalStates
e Flows: Water, EE, Signal

e Functions: ImportEE , ImportWater , ExportWater , MoveWater , ImportSignal
o Flows

o Modes (e.g., ImportEEMode , ImportSigMode )
= Mode probability model

= Actual modes in faultparams entry
o others attributes, e.g., Timer
e Model: pump connects functions, flows, and defines end_classification

e Parameter: pPumpParam defines values we can change in the simulation

16



More Resources for Model Definition

e Note the docs for model definition in
https://nasa.github.io/fmdtools/docs/fmdtools.define.html

e Other examples also can be helpful:
https://nasa.github.io/fmdtools/docs/Examples.html

17


https://nasa.github.io/fmdtools/docs/fmdtools.define.html
https://nasa.github.io/fmdtools/docs/Examples.html

Notebook Activity:

Open /examples/pump/Tutorial_ unfilled.ipynb :

e |nstantiate the model
© mdl = Pump()

e Explore structure
o Try different parameters!

o Change things!
What does the model directory look like?
© dir(mdl)

18



Simulation Concepts: Static/Undirected Propagation

new value in function
results in new flow values
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In a single timestep:

e Functions with static_behavior() methods simulate until behaviors converge
(i.e., no new state values)

e Functions with dynamic_behavior() run once in defined order o



Simulation Concepts: Propagation over Time
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e Model increments (simulated + history updated) over each time-step until a
defined final time-step or specified indicator returns true.



Simulation Concepts: Types of Simulations

Nominal performance

Performance over propagate.nominal()

i  Nominal Scenario Sampling
a set of possible

level 1 level 2 level 3 Resilience Triangle

operational o T s A = Ti
parameters | = b= Performance Event ecoviry ime
propagate. — l 100% = N _
nominal_approach() Fmdtools Fault Sampling Fesl'l'en;e to 3 single
ault or hazar

N mode 1 [ N/ TN/ TN propagate.one_fault()
Resilience overa  _| mode 2 N~ i propagate.sequence()
set of fault modes
propagate.approach() mode 3 [ &/ I

time 1 time 2 time 3 0%

fault scenarios

|

Resilience to a set of fault
modes over a set of
operational parameters
propagate.nested_approach()

For more info, (syntax/arguments), see documentation for fmdtools.sim.propagate


https://nasa.github.io/fmdtools/docs/fmdtools.sim.html#fmdtools-sim-propagate

Simulation Concepts: Sampling Approaches

These classes define multi-run simulations which can be used to quantify uncertain
performance/resiliences:
e SampleApproach: Which faults to sample and when

o Relies on mode information encoded in the model

o Simulated using propagate.approach()
e NominalApproach: Nominal parameters or random seeds to sample

o Can be simulated in propagate.nominal_approach()

o Can be simulated in conjunction with faults using propagate.nested_approach

See docs for: fmdtools.sim.approach
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https://nasa.github.io/fmdtools/docs/fmdtools.sim.html#module-fmdtools.sim.approach

Simulation Concepts: Things to Consider

Static/Dynamic propagation: How function states propagate to each other in a single
time-step and multiple time-steps

e Undirected graph representation—states can effect all other connected states, and
vice versa, in any order

Stochastic Propagation: Whether and how stochastic states are instantiated over time

e e.g.do we run with the “default” values of parameters, or do we sample from a
random number generator?

Breadth of Scenarios: How hazards are represented as discrete scenarios to simulate

e What set of joint faults do we use? How many times are sampled?

e Operational scenarios and joint operational/fault scenarios

23



Activity: Simulate the Model

Run fault propagation methods:

® propagate.nominal()
® propagate.one_fault()

® propagate.approach()

What do the results look like? Explore data structures:

® analyze.result.Result

® analyze.result.History
Explore:

e What happens when you change SampleApproach parameters?
e What happens when you change Model parameters?

e How do these methods compare in terms of computational time?

24



Analysis Modules

plot.py
Behavioral/Statistical Plotting

- hists(): Plots behavior of given states over
time in a set of scenarios

- metric_dist()/_from(): Histograms of
modelled metrics

- nominal_vals_1d/2d/3d(): Simulation
metric(s) in terms of input parameters

- nominal/nested_factor_comparison():
Comparison of simulation statistics over
given factors

matpl:tlib

graph.py
Visualization of simulation results on the
model graph
- Graph: Base class for graph display
methods, with methods like
- draw(): Show graph at state
- draw_from(): shows graph statesat
a given time-step

-ModelGraph, ASGGraph, etc: Subclasses
that create graph structures for specific
fmdtools classes

+@. NetworkX

%® Network Analysis in Python

tabulate.py

Display and export of simulation results as

tables

- fmea(): FMEA-like assessment with faults,
probabilities, and costs.

- metricovertime(): total metric, rate, and
expected metrics of scenarios over time

- nominal/nested_factor_comparison():
Table of simulation statistics over factors

- others...

!l pandas

result.py

Logging, processing, and save/load for simulation results

- Result: Class for storing results from a simulation specified in desired_result argument, e.g.:

- endclass (from find_classification)
- graph (graph view)
- model values (user-defined)

- History: Class for storing simulation histories specified using track argument

See docs for: fmdtools.analyze
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https://nasa.github.io/fmdtools/docs/fmdtools.analyze.html

Analysis Activity

Visualize the results:

e Show model graph
e Show nominal performances
e Show performances in a nominal scenario

e Make a scenario-based fmea
Explore:

e How can you show only the parameters you want? Or change the formatting?
e What does the behavior under other faults look like?

e What other analyses can you perform with these results?

26



Conclusions/Summary

e fmdtools is an environment for designing resilient systems
o /define enables model definition

o /sim is used to define simulations
o /analyze Is used to analyze and visualize simulation results

e | hope you agree that it has some powerful features!
o Modelling expressiveness and clarity

o Types of simulations that can be run

o Powerful but easy-to-leverage plug-and-play analyses

27



Further Reading/Links

 More advanced topics (see examples):
o Search and optimization

o Human/Al Modelling

o Systems-of-Systems modeling
o Modelling Stochastic Behavior
o ...and more

e Model Development Guide: Has best practices for developing models in a strategic
way (especially helpful for compelx models)

e Overview Paper:
o Hulse, D., Walsh, H., Dong, A., Hoyle, C., Tumer, I., Kulkarni, C., & Goebel, K.
(2021). fmdtools: A fault propagation toolkit for resilience assessment in early

design. International Journal of Prognostics and Health Management, 12(3). >


https://nasa.github.io/fmdtools/docs/Examples.html
https://nasa.github.io/fmdtools/docs/Development%20Guide.html#model-development-best-practices
http://papers.phmsociety.org/index.php/ijphm/article/view/2954
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