
Intro to resilience modeling, simulation, and
visualization in Python with fmdtools.

Author: Daniel Hulse

Version: 2.0.6

Overview
Overview of fmdtools

Purpose

Project Structure

Common Classes/Functions

Basic Syntax
Coding Activity

Example model: examples/pump/ex_pump.py

Workbook: examples/pump/Tutorial_unfilled.ipynb
Model Instantiation

Simulation

Visualization/Analysis

http://127.0.0.1:15951/examples/pump/ex_pump.py
http://127.0.0.1:15951/examples/pump/Tutorial_unfilled.ipynb

Prerequisites
Ideally, some pre-existing Python and Git knowledge

Anaconda distribution
Ideally this is already set up!

Download/install from: https://www.anaconda.com/products/individual

A git interface
Github Desktop (graphical git environment)

git-scm (stand-alone CLI)

https://www.anaconda.com/products/individual
https://desktop.github.com/
https://git-scm.com/

Motivation: Modeling System Resilience
Resilience means taking a dynamic understanding of risk and safety

Fault Time

Nominal Performance

Faulty Performance

Recovery

No Recovery

Prevention Recovery

Yodo, N., & Wang, P. (2016).

Resilience

Hazard

Nominal Scenario

Expected

Resilience:

𝔼(𝑅𝑒𝑠)

Resilience over a set of

hazardous scenarios

Why is Resilience Important?

Robustness Safety
Threshold

Recovery Time Safety
Threshold

Unsafe
Disrup�ons

Resilience means taking a dynamic
understanding of risk/safety

Safe Disrup�ons

Risk Outcomes
Considering resilience is important when
our system has dynamic attributes, e.g.:
- The system state changes over time

- (e.g., position, velocity,etc)
- We can control this state

- (e.g., operators, autopilot)
Because we can use it to determinehow to
control the system to a safe outcomein
unsafe circumstances and what
design/operational featureswe need to
enable this control

Enabling proactive design process

Proactive

Design

Reactive

Design

Concept Design Embodiment Design Implementation

Establish resilience

approach

Integrate resilient features

in design
Verify resilient function

?

?

?

?

?

Retrofit for resilience

?

?

?

?
Design systemChoose concept

S1 S2

S3

Image 1 & 2 Credit: User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
Image 3 Credit: https://en.wikipedia.org/wiki/File:General_Electric_Passport.jpg

Idea: the system should be resilient-by-design

Especially relevant to new systems when we don’t have data

Why fmdtools? Possible Competitors:
Uncertainty Quantification tools: (e.g. OpenCossan)

Does not incorporate fault modeling/propagation/visualization aspects
MATLAB/modelica/etc. Fault Simulation tools

Rely on pre-existing model/software stack--Useful, but often difficult to
hack/extend (not open-source)

Safety Assessment tools: (e.g. Alyrica, Hip-Hops)
Focused on quantifying safety, not necessarily resilience
As a result, use different model formalisms!

Why fmdtools? Pros:
Highly Expressive, modular model representation.

faults from any component can propagate to any other connected component
via undirected propagation

highly-extensible code-based behavior representation

class structure enables complex models representing human behavior and
systems of systems

Research-oriented:
Written in/relies on the Python stack

Open source/free software

Enables design:
Models can be parameterized and optimized!

Plug-and-play analyses and visualizations

Why not fmdtools? Cons:

You already have a pre-existing system model

fmdtools models are built in fmdtools

if you have a simulink/modelica model, you may just want to use built-in tools

You want to use this in production

fmdtools is Class E Software and thus mainly suitable for research (or, at least,
we don't gaurantee it)

Somewhat dynamic development history

What is fmdtools? A Python package for design,
simulation, and analysis of resilience.

What is fmdtools? Repo Structure
[Repository] (https://github.com/nasa/fmdtools/)

/fmdtools : installable package

/examples : example models with demonstrative notebooks and tests

/docs : resources for documentation

/tests : stand-alone tests (and testing rigs)

README.md : Basic package description

CONTRIBUTORS.md : Credit for contributions

requirements.txt : List of requirements

... and other configuration files

https://github.com/nasa/fmdtools/
https://nasa.github.io/fmdtools/

Activity: Download and Install fmdtools
repo link: https://github.com/nasa/fmdtools/

set up repo:
create path/to/fmdtools folder for repo

(usually in /documents/GitHub)

clone git into folder:
git clone https://github.com/nasa/fmdtools.git

can also use webpage
package installation:

Open Python from anaconda (e.g., open Spyder)

Install with pip install -e /path/to/fmdtools

https://github.com/nasa/fmdtools/

Analysis Workflow/Structure

Defini�on Packages
/define/block/func�on.py,
/define/container/state.py

/define/flow/base.py
/define/architecture/func�on.py

/define/container/mode.py, …

System Model File: model.py
- State Classes
- Flow Classes
- Func�on Classes
- Mode Classes
- Model Classes
- Parameter Classes
- etc…

Analysis Script: Script.py or Notebook.ipynb
- Model instan�a�on (e.g. mdl = Model())
- Simula�on

- result, history = propagate.one_fault(mdl, fault, t) …
- Results processing and visualiza�on

- ModelGraph(mdl).draw()
- History.plot_line(‘value’)
- etc…

Simula�on Modules
/sim/propagate.py

/sim/sample.py
/sim/search.py

Analysis Modules
/analyze/phases.py

/analyze/tabulate.py
/analyze/phases.py …

Func�onArchitecture,
Func�on, Flow, State…

Model
Class

ParameterSample,
one_fault(), etc…

PhaseMap,
fmea(), etc…

Defining a Model
What do we want out of a model?

What behaviors and how much fidelity do we need?
What functions/components and interactions make up the system?

Single function or multiple functions?

Is it controlled? Are there multiple agents?
What type of simulation do we want to run?

Single-timestep vs multi-timestep vs network

What scenarios do we want to study and how?
Failure modes and faulty behaviors

Disturbances and changes in parameters

What are the possible effects of hazards and how bad are they?
By what metrics?

Defining a Model

Func�onArchitecture: Agglomera�on
of Func�ons, Flows, and Hazard Metrics

Component: Sub-behavior
internal to a Func�on with its own

behaviors and proper�es, etc

Flow: Data Structures
(inputs/outputs) that connect Func�ons

Func�on: Defines high-level
system behaviors as well as failure

modes and component architectures

State: Entries that define
Func�on/Flow state

Containers - The building blocks of simulations

class StateName(State):
varname1: float = 1.0
varname2: str = “default_value”

class ParameterName(Parameter):
varname1: float = 1.0
varname1_range = (0.0, 10.0)
varname2 : str = “default_value”
varname2_set = (“default_value”, “other_possible_value”)

class ModeName(Mode):
fm_args = {‘fault_1’: (0.001, 200.0),

‘fault_2’: 0.00001, 100.0, {‘on’: 1.0}}
opermodes = [“off”, “on”]
mode: str = “off”

State classes are used to represent variables
(called fields) that change over �me

Parameter classes are used to represent variables that
don’t change over �me, with similar syntax to States

Mode classes are used to represent modes (faults and
opera�onal modes) that could occur in the system

Field name Field type or
class

Default ini�al
value

varname1_range defines allowable range for
the variable varname1

varname2_set defines allowable values for the field varname2

Dic�onary of fault names and their op�onal proper�es (rate,
repair cost, phases they could occur and their rates)

List of poten�al opera�onal modes (if mul�ple)

Default mode (if mul�ple modes/not nominal)

Containers are used to define various attribtues of Functions and Flows

Flow Code Template

class FlowName(Flow):
__slots__ = ()
container_s = StateName()
container_p = ParameterName()
default_track = [‘s’,’m’]

def indicate_XXX(self, �me):
Condi�onal statement (e.g., self.s.state>threshold) which

is logged in the history and may be used to terminate
simula�ons

Classes in fmdtools rely heavily on __slots__ for performance and
type-safety. If no non-standard a�ributes are added, leave this

blank.

Specifies which container classes play specific Flow roles
(e.g., s corresponds to the state role, p corresponds to a

parameter role, m corresponds to the mode role, etc)

These methods define Flow indicators
and are called/tracked during

simula�on (in flow.i)

Specifies what should be tracked in the FxnBlock history
(fxnname.h) by default. May be a dict ({role:value}), list ([role1,

role2]), or string (“all”,”none”, etc). Overwri�en by the track
parameter during model instan�a�on.

Flows represent connections or shared variables between different functions. Think
of them as Function inputs/outputs.

Flows are build from container classes like states, along with their own
methods/variables.

Function Code Template
class Func�onName(Func�on):

__slots__ =(‘flowname1’,)
container_s = Func�onState
container_m = Func�onMode
container_t = Func�onTime
flow_flowname1 = FlowClass1
flownames = {“outsideflowname”:”flowname1”}
default_sp = {‘end_�me’: 100}
default_track = [‘s’,’m’]
def init_block(self, **kwargs):

<e.g., self.s.x = 2.0>
def sta�c_behavior (self, �me):

Runs only in sta�c propaga�on steps
def dynamic_behavior (self, �me):

Runs only in dynamic propaga�on steps
def behavior(self, �me):

Runs in sta�c propaga�on step (same as sta�c_behavior)
def condfaults(self, �me):

Runs in both sta�c and dynamic propaga�on steps prior to behaviors
and internal fault propaga�on (to components and ac�ons)

def indicate_XXX(self, �me):
Condi�onal statement (e.g., self.s.state>threshold) which is logged in

the history and may be used to terminate simula�ons
def find_classifica�on(self, �me):

Returns a Result dic�onary (calculated at comple�on)

Specifies what should be trackedin the
FxnBlock history (fxnname.h) by default.
May be a dict ({role:value}), list ([role1,

role2]), or string (“all”,”none”, etc).
Overwri�en by the track parameter during

model instan�a�on.

flow_XXX is used to append aflow of
given type that is named XXX to the

func�on class. If the flow(s) has a
different name outside the func�on
(op�onal), flownames matches the
external name to the internal name

Specifies which classes play specificFxnBlock roles (e.g., s
corresponds to the state role, m corresponds to the mode

role, etc)

Op�onal method to call to set upFxnBlock in
ways not already defined by roleinitaliza�on

(e.g., a�aching local Mul�Flows or se�ng
ini�al values for States from Parameter)

These methods define thebehavior of
the FxnBlock and thus simulate at each

�me-step of the simula�on.

These methods defineFxnBlock
indicators and are called/tracked
during simula�on (in fxnname.i)

Default keyword arguments forSimParam.
Only necessary when thefunc�onblock will

be simulated individually.

This method defines the Result to be
returned when simulated individually

Tuple of flows must be specified in __slots__

Model Code Template

class ArchitectureName (Func�onArchitecture):
__slots__ = ()
container_p= ModelParam
default_sp = {‘end_�me’: 100}
default_track = [“fxns”, “flows]

def init_architecture(self, **kwargs):
self.add_flow(“flowname”, FlowClass)
…
self.add_fxn(“func�onname”, Func�onClass, “flowname1”, “flowname2”)
…

def indicate_XXX(self, �me):
Condi�onal statement
(e.g., self.fxns[“func�onname”].s.state>threshold)

which is logged in the history and may be used to terminate simula�ons

def find_classifica�on(self, �me):
Returns a Result dic�onary (calculated at comple�on)

Specifies what should be trackedin the Model
history by default. May be adict ({role:value}), list

([role1, role2]), or string (“all”,”none”, etc).
Overwri�en by the track op�on in propagate.

Points to a Parameter represen�ng immutable model
characteris�cs instan�ated at the start of the simula�on

Method to instan�ate the model and define
its structure:,

- .add_flow is used to instan�ate a flow
- .add_fxn is used to instan�ate a func�on

and a�ach connected flows

These methods define Model
indicators and are called/tracked

during simula�on (inmodelname.i)

Default keyword arguments forSimParam.
Defines max �me of the simula�on, along

with phases, �mestep, units, etc.

This method defines the Result to be
returned by the model.

Architecture classes are usually given empty __slots__

Demo Model Activity: examples/pump/ex_pump.py
Notice the definitions and structure:

States: WaterStates , EEStates , SignalStates

Flows: Water , EE , Signal

Functions: ImportEE , ImportWater , ExportWater , MoveWater , ImportSignal
Flows

Modes (e.g., ImportEEMode , ImportSigMode)
Mode probability model

Actual modes in fm_args entry

others attributes, e.g., Timer

Model: Pump connects functions, flows, and defines end_classification

Parameter: PumpParam defines values we can change in the simulation

More Resources for Model Definition

Note the docs for model definition are in https://nasa.github.io/fmdtools/docs-
source/fmdtools.define.html

Other examples also can be helpful:
https://nasa.github.io/fmdtools/examples/Examples.html

https://nasa.github.io/fmdtools/docs-source/fmdtools.define.html
https://nasa.github.io/fmdtools/docs-source/fmdtools.define.html
https://nasa.github.io/fmdtools/examples/Examples.html

Notebook Activity:
Open /examples/pump/Tutorial_unfilled.ipynb :

Instantiate the model
mdl = Pump()

Explore structure
Try different parameters!
Change things!
What does the model directory look like?

dir(mdl)

Simulation Concepts: Static/Undirected Propagation
adjacent functions updatednew value in function

results in new flow values

Flow 2

Flow 1
Fxn 1

Fxn 4

Fxn 3

Flow 4
Flow 3

Fxn 2

update all functions

new value in adj function function updated no new values = done

Flow 2

Flow 1
Fxn 1

Fxn 4

Fxn 3

Flow 4
Flow 3

Fxn 2

Flow 2

Flow 1
Fxn 1

Fxn 4

Fxn 3

Flow 4
Flow 3

Fxn 2

Flow 2

Flow 1
Fxn 1

Fxn 4

Fxn 3

Flow 4
Flow 3

Fxn 2

Flow 2

Flow 1
Fxn 1

Fxn 4

Fxn 3

Flow 4
Flow 3

Fxn 2

Flow 2

Flow 1
Fxn 1

Fxn 4

Fxn 3

Flow 4
Flow 3

Fxn 2

In a single timestep:

Functions with static_behavior() methods simulate until behaviors converge (i.e.,
no new state values)
Functions with dynamic_behavior() run once in defined order

Simulation Concepts: Propagation over Time

Flow 2

Flow 1
Fxn 1

Fxn 4

Fxn 3

Flow 4
Flow 3

Fxn 2

Flow 2

Flow 1
Fxn 1

Fxn 4

Fxn 3

Flow 4
Flow 3

Fxn 2

Model
History

Faults

Value 1

...

nom

1

fault

0

fault

0

fault

0

fault

0

fault

0

fault

0

nom

1

nom

1

Fxn 1:

Flow1:

...

1 2 3 4 5 6 7 ... endTime

Update model at time

Update history at time

Iterate
timesfxn, fault, time

Inject fault at time

...

Model increments (simulated + history updated) over each time-step until a
defined final time-step or specified indicator returns true.

Simulation Concepts: Types of Simulations

Nominal performance

propagate.nominal()Performance over

a set of possible

operational

parameters
propagate.

parameter_sample ()

Resilience over a

set of fault modes
propagate.

fault_sample()

Resilience to a single

fault or hazard

propagate.one_fault()
propagate.sequence()

Resilience to a set of fault

modes over a set of

operational parameters

propagate.nested_sample()

For more info on syntax/arguments, see documentation for fmdtools.sim.propagate .

https://nasa.github.io/fmdtools/docs-source/fmdtools.sim.html#fmdtools-sim-propagate

Simulation Concepts: Sampling Approaches
These classes define multi-run simulations which can be used to quantify uncertain
performance/resiliences:

SampleApproach/FaultSample: Which faults to sample and when

Relies on mode information encoded in the model

Simulated using propagate.fault_sample()

ParameterSample: Nominal parameters or random seeds to sample

Can be simulated in propagate.parameter_sample()

Can be simulated in conjunction with faults using propagate.nested_sample

See docs for: fmdtools.sim.fault_sample

https://nasa.github.io/fmdtools/docs-source/fmdtools.sim.html#module-fmdtools.sim.fault_sample

Simulation Concepts: Things to Consider
Static/Dynamic propagation: How function states propagate to each other in a single
time-step and multiple time-steps

Undirected graph representation—states can effect all other connected states, and
vice versa, in any order

Stochastic Propagation: Whether and how stochastic states are instantiated over time

e.g. do we run with the “default” values of parameters, or do we sample from a
random number generator?

Breadth of Scenarios: How hazards are represented as discrete scenarios to simulate

What set of joint faults do we use? How many times are sampled?

Operational scenarios and joint operational/fault scenarios

Activity: Simulate the Model
Run fault propagation methods:

propagate.nominal()

propagate.one_fault()

propagate.fault_sample()

What do the results look like? Explore data structures:

analyze.result.Result

analyze.result.History

Explore:

What happens when you change FaultSample parameters?

What happens when you change Model parameters?

How do these methods compare in terms of computational time?

Analysis Modules

/graph
Graph-based visualiza�ons.

result.py
Analysis and save/load of
simula�on results.
- Result: Class for storing and

analyzing results from a
simula�on specified in
desired_result argument

tabulate.py
Construc�on of analyses based
on samples.
- FMEA: FMEA-like

assessment with faults,
probabili�es, and costs.

- Comparison: Class for
comparing different metrics
over different scenarios in a
ParameterSample /Faultsam
ple.

- NominalEnvelope: Class for
determining nominal
envelope of system over a
ParameterSample

common.py
Basic analysis u�li�es (plo�ng, calcula�ons, etc) used throughout.

history.py
Logging, processing, and
simula�on histories.
- History: Class for logging and

analyzing results from a
simula�on specified by
tracking op�ons.

phases.py
Analysis of phases of
opera�on in the system
- PhaseMap: Class for

interac�ng with model
phases of opera�on for
sampling and analysis.

- from_hist(): method for
genera�ng PhaseMaps
from throughout a
model.

base.py
Generic graph-based visualiza�ons.
- Graph: Base class for displaying

and interac�ng with graphs.

label.py
Defines graph
labels.

model.py
Graph visualiza�ons for models
- ModelGraph: Class to represent

model constructs as graphs

style.py
Defines node and
edge styles.

See docs for: fmdtools.analyze

https://nasa.github.io/fmdtools/docs-source/fmdtools.analyze.html

Analysis Activity
Visualize the results:

Show model graph
Show nominal performances

Show performances in a nominal scenario

Make a scenario-based FMEA

Explore:

How can you show only the parameters you want? Or change the formatting?

What does the behavior under other faults look like?
What other analyses can you perform with these results?

Conclusions/Summary
fmdtools is an environment for designing resilient systems

/define enables model definition

/sim is used to define simulations

/analyze is used to analyze and visualize simulation results

I hope you agree that it has some powerful features!
Modeling expressiveness and clarity

Types of simulations that can be run
Powerful but easy-to-leverage plug-and-play analyses

Further Reading/Links
More advanced topics (see examples):

Search and optimization
Human/AI Modeling

Systems-of-Systems modeling

Modeling Stochastic Behavior

... and more
Model Development Guide: Has best practices for developing models in a strategic
way (especially helpful for compelx models)

Overview Paper:
Hulse, D., Walsh, H., Dong, A., Hoyle, C., Tumer, I., Kulkarni, C., & Goebel, K.
(2021). fmdtools: A fault propagation toolkit for resilience assessment in early
design. International Journal of Prognostics and Health Management, 12(3).

http://127.0.0.1:15951/examples/Examples.rst
https://nasa.github.io/fmdtools/docs-source/Development%20Guide.html#model-development-best-practices
http://papers.phmsociety.org/index.php/ijphm/article/view/2954
http://papers.phmsociety.org/index.php/ijphm/article/view/2954
http://papers.phmsociety.org/index.php/ijphm/article/view/2954

