Module delta.extensions.layers.simple
Simple helpful layers.
Expand source code
# Copyright © 2020, United States Government, as represented by the
# Administrator of the National Aeronautics and Space Administration.
# All rights reserved.
#
# The DELTA (Deep Earth Learning, Tools, and Analysis) platform is
# licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0.
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Simple helpful layers.
"""
import tensorflow as tf
import tensorflow.keras.layers #pylint: disable=no-name-in-module
import tensorflow.keras.backend as K #pylint: disable=no-name-in-module
from delta.config.extensions import register_layer
class RepeatedGlobalAveragePooling2D(tensorflow.keras.layers.Layer):
"""
Global average pooling in 2D for fully convolutional networks.
Takes the global average over the entire input, and repeats
it to return a tensor the same size as the input.
"""
def compute_output_shape(self, input_shape): # pylint: disable=no-self-use
return input_shape
def call(self, inputs, **_): # pylint: disable=no-self-use
ones = tf.fill(tf.shape(inputs)[:-1], 1.0)
ones = tf.expand_dims(ones, -1)
mean = K.mean(inputs, axis=[1, 2])
mean = tf.expand_dims(mean, 1)
mean = tf.expand_dims(mean, 1)
return mean * ones
class ReflectionPadding2D(tensorflow.keras.layers.Layer):
"""
Add reflected padding of the given size surrounding the input.
"""
def __init__(self, padding=(1, 1), **kwargs):
super().__init__(**kwargs)
self.padding = tuple(padding)
def get_config(self):
config = super().get_config()
config.update({'padding': self.padding})
return config
def call(self, inputs, **_):
w_pad,h_pad = self.padding
return tf.pad(inputs, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
register_layer('RepeatedGlobalAveragePooling2D', RepeatedGlobalAveragePooling2D)
register_layer('ReflectionPadding2D', ReflectionPadding2D)
Classes
class ReflectionPadding2D (padding=(1, 1), **kwargs)
-
Add reflected padding of the given size surrounding the input.
Expand source code
class ReflectionPadding2D(tensorflow.keras.layers.Layer): """ Add reflected padding of the given size surrounding the input. """ def __init__(self, padding=(1, 1), **kwargs): super().__init__(**kwargs) self.padding = tuple(padding) def get_config(self): config = super().get_config() config.update({'padding': self.padding}) return config def call(self, inputs, **_): w_pad,h_pad = self.padding return tf.pad(inputs, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
Ancestors
- keras.engine.base_layer.Layer
- tensorflow.python.module.module.Module
- tensorflow.python.training.tracking.autotrackable.AutoTrackable
- tensorflow.python.training.tracking.base.Trackable
- keras.utils.version_utils.LayerVersionSelector
Methods
def call(self, inputs, **_)
-
This is where the layer's logic lives.
The
call()
method may not create state (except in its first invocation, wrapping the creation of variables or other resources intf.init_scope()
). It is recommended to create state in__init__()
, or thebuild()
method that is called automatically beforecall()
executes the first time.Args
inputs
- Input tensor, or dict/list/tuple of input tensors.
The first positional
inputs
argument is subject to special rules: -inputs
must be explicitly passed. A layer cannot have zero arguments, andinputs
cannot be provided via the default value of a keyword argument. - NumPy array or Python scalar values ininputs
get cast as tensors. - Keras mask metadata is only collected frominputs
. - Layers are built (build(input_shape)
method) using shape info frominputs
only. -input_spec
compatibility is only checked againstinputs
. - Mixed precision input casting is only applied toinputs
. If a layer has tensor arguments in*args
or**kwargs
, their casting behavior in mixed precision should be handled manually. - The SavedModel input specification is generated usinginputs
only. - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported forinputs
and not for tensors in positional and keyword arguments. *args
- Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.
**kwargs
- Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
-
training
: Boolean scalar tensor of Python boolean indicating whether thecall
is meant for training or inference. -mask
: Boolean input mask. If the layer'scall()
method takes amask
argument, its default value will be set to the mask generated forinputs
by the previous layer (ifinput
did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).
Returns
A tensor or list/tuple of tensors.
Expand source code
def call(self, inputs, **_): w_pad,h_pad = self.padding return tf.pad(inputs, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
def get_config(self)
-
Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by
Network
(one layer of abstraction above).Note that
get_config()
does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.Returns
Python dictionary.
Expand source code
def get_config(self): config = super().get_config() config.update({'padding': self.padding}) return config
class RepeatedGlobalAveragePooling2D (trainable=True, name=None, dtype=None, dynamic=False, **kwargs)
-
Global average pooling in 2D for fully convolutional networks.
Takes the global average over the entire input, and repeats it to return a tensor the same size as the input.
Expand source code
class RepeatedGlobalAveragePooling2D(tensorflow.keras.layers.Layer): """ Global average pooling in 2D for fully convolutional networks. Takes the global average over the entire input, and repeats it to return a tensor the same size as the input. """ def compute_output_shape(self, input_shape): # pylint: disable=no-self-use return input_shape def call(self, inputs, **_): # pylint: disable=no-self-use ones = tf.fill(tf.shape(inputs)[:-1], 1.0) ones = tf.expand_dims(ones, -1) mean = K.mean(inputs, axis=[1, 2]) mean = tf.expand_dims(mean, 1) mean = tf.expand_dims(mean, 1) return mean * ones
Ancestors
- keras.engine.base_layer.Layer
- tensorflow.python.module.module.Module
- tensorflow.python.training.tracking.autotrackable.AutoTrackable
- tensorflow.python.training.tracking.base.Trackable
- keras.utils.version_utils.LayerVersionSelector
Methods
def call(self, inputs, **_)
-
This is where the layer's logic lives.
The
call()
method may not create state (except in its first invocation, wrapping the creation of variables or other resources intf.init_scope()
). It is recommended to create state in__init__()
, or thebuild()
method that is called automatically beforecall()
executes the first time.Args
inputs
- Input tensor, or dict/list/tuple of input tensors.
The first positional
inputs
argument is subject to special rules: -inputs
must be explicitly passed. A layer cannot have zero arguments, andinputs
cannot be provided via the default value of a keyword argument. - NumPy array or Python scalar values ininputs
get cast as tensors. - Keras mask metadata is only collected frominputs
. - Layers are built (build(input_shape)
method) using shape info frominputs
only. -input_spec
compatibility is only checked againstinputs
. - Mixed precision input casting is only applied toinputs
. If a layer has tensor arguments in*args
or**kwargs
, their casting behavior in mixed precision should be handled manually. - The SavedModel input specification is generated usinginputs
only. - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported forinputs
and not for tensors in positional and keyword arguments. *args
- Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.
**kwargs
- Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
-
training
: Boolean scalar tensor of Python boolean indicating whether thecall
is meant for training or inference. -mask
: Boolean input mask. If the layer'scall()
method takes amask
argument, its default value will be set to the mask generated forinputs
by the previous layer (ifinput
did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).
Returns
A tensor or list/tuple of tensors.
Expand source code
def call(self, inputs, **_): # pylint: disable=no-self-use ones = tf.fill(tf.shape(inputs)[:-1], 1.0) ones = tf.expand_dims(ones, -1) mean = K.mean(inputs, axis=[1, 2]) mean = tf.expand_dims(mean, 1) mean = tf.expand_dims(mean, 1) return mean * ones
def compute_output_shape(self, input_shape)
-
Computes the output shape of the layer.
This method will cause the layer's state to be built, if that has not happened before. This requires that the layer will later be used with inputs that match the input shape provided here.
Args
input_shape
- Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.
Returns
An input shape tuple.
Expand source code
def compute_output_shape(self, input_shape): # pylint: disable=no-self-use return input_shape