Example 10 from RP-1311ΒΆ

Note

The python script for this example is available in the source/bind/python/cea/samples directory of the CEA repository.

Here we describe how to run example 10 from RP-1311 [1] using the Python API. This is a rocket problem assuming a finite-area combustor (FAC), using normalized mass flow rate \(\dot{m} /A_c\) to define the combustor area; the example is otherwise similar to Example 9.

First import the required libraries:

import numpy as np
import cea

Use cea.R inline when normalizing enthalpy.

Declare the reactants and set their amounts and initial temperatures. Currently, the Python API requires species names to be in bytes format, so we use the b"" syntax to create byte strings. The initial reactant temperatures, T_reactant, will be used later to compute the chamber enthalpy. The amounts of each are specified through the fuel_weights, oxidant_weights, and of_ratio variables specified here. Setting the fuel_weights array equal to [1.0, 0.0] means that H2(L) constitutes 100% of the fuel, and similarly, setting the oxidant_weights array equal to [0.0, 1.0] means that O2(L) constitutes 100% of the oxidant. These values will be used in conjunction later with of_ratio to compute the overall weight fraction array of the reactant mixture.

reac_names = [b"H2(L)", b"O2(L)"]
T_reactant = np.array([20.27, 90.17])  # Reactant temperatures (K)
fuel_weights = np.array([1.0, 0.0])
oxidant_weights = np.array([0.0, 1.0])
of_ratio = 5.55157

Next, set some states for the rocket analysis. We will pass these values into the RocketSolver later.

pc = 53.3172  # Chamber pressure (bar)
pi_p = [10.0, 100.0, 1000.0]   # Pressure ratio
supar = [25.0, 50.0, 75.0]  # Supersonic area ratio
mdot = 1333.9  # Mass flow rate (kg/s)

Instantiate the reactant and product Mixture objects. To create the product Mixture, we pass the list of reactant names along with the flag products_from_reactants=True, which will return the full set of possible product species.

reac = cea.Mixture(reac_names)
prod = cea.Mixture(reac_names, products_from_reactants=True)

Now instantiate the RocketSolver and RocketSolution objects.

solver = cea.RocketSolver(prod, reactants=reac)
solution = cea.RocketSolution(solver)

Now we will use the reactant Mixture object to compute the overall weight fraction array of the reactants:

weights = reac.of_ratio_to_weights(oxidant_weights, fuel_weights, of_ratio)

And compute the chamber enthalpy value based on the reactants weights and temperatures. We will pass this in later when we call solve(). Note that this value is normalized by R here.

hc = reac.calc_property(cea.ENTHALPY, weights, T_reactant)/cea.R

Now we can solve the solve() function:

solver.solve(solution, weights, pc, pi_p, supar=supar, mdot=mdot, iac=False, hc=hc)

Finally, querry the solution variables and print them out:

num_pts = solution.num_pts
T = solution.T
P = solution.P
rho = solution.density
enthalpy = solution.enthalpy
energy = solution.energy
gibbs = solution.gibbs_energy
entropy = solution.entropy
M_1n = solution.M
MW = solution.MW
cp_eq = solution.cp_eq
cp_fr = solution.cp_fr
cv_eq = solution.cv_eq
cv_fr = solution.cv_fr
Mach = solution.Mach
gamma_s = solution.gamma_s
v_sonic = solution.sonic_velocity
ae_at = solution.ae_at
c_star = solution.c_star
Cf = solution.coefficient_of_thrust
Isp = solution.Isp
Isp_vac = solution.Isp_vacuum

print("P, bar         ", end=" ")
for i in range(num_pts):
    if i == 1:  # Skip solution at infinity
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(P[i]), end=" ")
    else:
        print("{0:10.3f}".format(P[i]))

print("T, K           ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(T[i]), end=" ")
    else:
        print("{0:10.3f}".format(T[i]))

print("Density, kg/m^3", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(rho[i]), end=" ")
    else:
        print("{0:10.3f}".format(rho[i]))

print("H, kJ/kg       ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.2f}".format(enthalpy[i]), end=" ")
    else:
        print("{0:10.2f}".format(enthalpy[i]))

print("U, kJ/kg       ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.2f}".format(energy[i]), end=" ")
    else:
        print("{0:10.2f}".format(energy[i]))

print("G, kJ/kg       ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.1f}".format(gibbs[i]), end=" ")
    else:
        print("{0:10.1f}".format(gibbs[i]))

print("S, kJ/kg-K     ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(entropy[i]), end=" ")
    else:
        print("{0:10.3f}".format(entropy[i]))

print("M, (1/n)       ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(M_1n[i]), end=" ")
    else:
        print("{0:10.3f}".format(M_1n[i]))

print("MW             ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(MW[i]), end=" ")
    else:
        print("{0:10.3f}".format(MW[i]))

print("Cp_eq, kJ/kg-K ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(cp_eq[i]), end=" ")
    else:
        print("{0:10.3f}".format(cp_eq[i]))

print("Cp_fr, kJ/kg-K ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(cp_fr[i]), end=" ")
    else:
        print("{0:10.3f}".format(cp_fr[i]))

print("Cv_eq, kJ/kg-K ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(cv_eq[i]), end=" ")
    else:
        print("{0:10.3f}".format(cv_eq[i]))

print("Cv_eq, kJ/kg-K ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(cv_fr[i]), end=" ")
    else:
        print("{0:10.3f}".format(cv_fr[i]))

print("Gamma_s        ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(gamma_s[i]), end=" ")
    else:
        print("{0:10.3f}".format(gamma_s[i]))

print("Son. vel., m/s ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.2f}".format(v_sonic[i]), end=" ")
    else:
        print("{0:10.2f}".format(v_sonic[i]))

print("Mach           ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(Mach[i]), end=" ")
    else:
        print("{0:10.3f}".format(Mach[i]))

print()
print("PERFORMANCE PARAMETERS")
print()

print("Ae/At          ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(ae_at[i]), end=" ")
    else:
        print("{0:10.3f}".format(ae_at[i]))

print("C*, m/s        ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.2f}".format(c_star[i]), end=" ")
    else:
        print("{0:10.2f}".format(c_star[i]))

print("Cf             ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(Cf[i]), end=" ")
    else:
        print("{0:10.3f}".format(Cf[i]))

print("Isp, vac., m/s ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(Isp_vac[i]), end=" ")
    else:
        print("{0:10.3f}".format(Isp_vac[i]))

print("Isp, m/s       ", end=" ")
for i in range(num_pts):
    if i == 1:
        continue
    if i < num_pts-1:
        print("{0:10.3f}".format(Isp[i]), end=" ")
    else:
        print("{0:10.3f}".format(Isp[i]))

print()

print()
print("MOLE FRACTIONS")
print("")
trace_species = []
for prod in solution.mole_fractions:
    if np.any(solution.mole_fractions[prod] > 5e-6):
        print("{0:15s}".format(prod), end=" ")
        for j in range(len(solution.mole_fractions[prod])):
            if j == 1:
                continue
            if j < len(solution.mole_fractions[prod])-1:
                print("{0:10.5g}".format(solution.mole_fractions[prod][j]), end=" ")
            else:
                print("{0:10.5g}".format(solution.mole_fractions[prod][j]))
    else:
        trace_species.append(prod)

print()
print("TRACE SPECIES:")
max_cols = 8
nrows = (len(trace_species) + max_cols - 1) // max_cols
for i in range(nrows):
    print(" ".join("{0:15s}".format(trace_species[j]) for j in range(i * max_cols, min((i + 1) * max_cols, len(trace_species)))))

This results in the following output to the terminal:

P, bar              53.317     44.613     28.269      5.332      0.533      0.053      0.189      0.075      0.044
T, K              3383.845   3341.127   3179.574   2595.058   1787.250   1136.019   1469.591   1220.872   1089.804
Density, kg/m^3      2.410      2.044      1.372      0.324      0.047      0.007      0.020      0.010      0.006
H, kJ/kg          -1026.05   -1238.93   -2206.45   -5291.52   -8467.22  -10561.95   -9526.82  -10306.49  -10698.76
U, kJ/kg          -3238.68   -3421.28   -4266.22   -6937.12   -9592.53  -11277.13  -10452.00  -11075.09  -11384.84
G, kJ/kg          -64163.7   -63757.2   -61701.8   -53849.5   -41909.8   -31818.8   -37025.4   -33151.1   -31090.9
S, kJ/kg-K          18.659     18.712     18.712     18.712     18.712     18.712     18.712     18.712     18.712
M, (1/n)            12.716     12.729     12.835     13.112     13.205     13.207     13.207     13.207     13.207
MW                  12.716     12.729     12.835     13.112     13.205     13.207     13.207     13.207     13.207
Cp_eq, kJ/kg-K       8.325      8.294      7.580      5.024      3.459      2.978      3.225      3.043      2.943
Cp_fr, kJ/kg-K       3.934      3.926      3.894      3.748      3.414      2.978      3.221      3.043      2.943
Cv_eq, kJ/kg-K       7.130      7.109      6.515      4.279      2.826      2.349      2.595      2.413      2.313
Cv_eq, kJ/kg-K       3.280      3.273      3.246      3.114      2.784      2.349      2.591      2.413      2.313
Gamma_s              1.145      1.144      1.146      1.170      1.224      1.268      1.243      1.261      1.272
Son. vel., m/s     1591.47    1580.26    1536.49    1387.42    1173.46     952.30    1072.24     984.42     934.25
Mach                 0.000      0.413      1.000      2.105      3.287      4.586      3.845      4.376      4.708

PERFORMANCE PARAMETERS

Ae/At                0.000      1.581      1.000      2.228     11.537     64.771     25.000     50.000     75.000
C*, m/s            2331.00    2331.00    2331.00    2331.00    2331.00    2331.00    2331.00    2331.00    2331.00
Cf                   0.000      0.280      0.659      1.253      1.655      1.874      1.769      1.848      1.887
Isp, vac., m/s       0.000   3997.084   2877.055   3484.187   4149.463   4530.889   4347.670   4486.634   4554.328
Isp, m/s             0.000    652.501   1536.487   2920.774   3857.762   4367.126   4123.290   4308.233   4398.342


MOLE FRACTIONS

H                 0.033498   0.032963   0.027157  0.0088902 0.00024165 1.3303e-07 1.5294e-05 5.7879e-07 5.3925e-08
H2                 0.29479    0.29453    0.29418    0.29677    0.30037    0.30052    0.30051    0.30052    0.30052
H2O                0.63456    0.63673    0.65176    0.68895    0.69934    0.69948    0.69948    0.69948    0.69948
H2O2            5.6145e-06 4.7924e-06 2.5779e-06 1.2808e-07 6.6294e-11 6.6931e-17 3.5562e-13 9.1896e-16 1.3572e-17
HO2             1.4937e-05 1.3033e-05 6.7146e-06 2.1556e-07 1.5477e-11 1.5329e-19 1.5833e-14  5.339e-18 1.7481e-20
O                0.0020678  0.0019693  0.0012556 9.1657e-05 2.2451e-08 8.1616e-16 4.0804e-11 2.3271e-14 1.0437e-16
O2               0.0017218  0.0016506  0.0010882 8.6583e-05  2.316e-08 9.8565e-16 4.4543e-11  2.721e-14 1.2863e-16
OH                0.033341   0.032143   0.024545  0.0052119 4.1356e-05 2.1439e-09 1.0824e-06 1.4701e-08 6.5803e-10

TRACE SPECIES:
O3              H2O(L)          H2O(cr)