Example 10 from RP-1311ΒΆ
Note
The python script for this example is available in the source/bind/python/cea/samples directory of the CEA repository.
Here we describe how to run example 10 from RP-1311 [1] using the Python API. This is a rocket problem assuming a finite-area combustor (FAC), using normalized mass flow rate \(\dot{m} /A_c\) to define the combustor area; the example is otherwise similar to Example 9.
First import the required libraries:
import numpy as np
import cea
Use cea.R inline when normalizing enthalpy.
Declare the reactants and set their amounts and initial temperatures. Currently, the Python API requires species names to be in bytes format, so we use the b"" syntax to create byte strings. The initial reactant temperatures, T_reactant, will be used later to compute the chamber enthalpy. The amounts of each are specified through the fuel_weights, oxidant_weights, and of_ratio variables specified here. Setting the fuel_weights array equal to [1.0, 0.0] means that H2(L) constitutes 100% of the fuel, and similarly, setting the oxidant_weights array equal to [0.0, 1.0] means that O2(L) constitutes 100% of the oxidant. These values will be used in conjunction later with of_ratio to compute the overall weight fraction array of the reactant mixture.
reac_names = [b"H2(L)", b"O2(L)"]
T_reactant = np.array([20.27, 90.17]) # Reactant temperatures (K)
fuel_weights = np.array([1.0, 0.0])
oxidant_weights = np.array([0.0, 1.0])
of_ratio = 5.55157
Next, set some states for the rocket analysis. We will pass these values into the RocketSolver later.
pc = 53.3172 # Chamber pressure (bar)
pi_p = [10.0, 100.0, 1000.0] # Pressure ratio
supar = [25.0, 50.0, 75.0] # Supersonic area ratio
mdot = 1333.9 # Mass flow rate (kg/s)
Instantiate the reactant and product Mixture objects.
To create the product Mixture, we pass the list of reactant names along with the flag products_from_reactants=True, which will return the full set of possible product species.
reac = cea.Mixture(reac_names)
prod = cea.Mixture(reac_names, products_from_reactants=True)
Now instantiate the RocketSolver and RocketSolution objects.
solver = cea.RocketSolver(prod, reactants=reac)
solution = cea.RocketSolution(solver)
Now we will use the reactant Mixture object to compute the overall weight fraction array of the reactants:
weights = reac.of_ratio_to_weights(oxidant_weights, fuel_weights, of_ratio)
And compute the chamber enthalpy value based on the reactants weights and temperatures. We will pass this in later when we call solve().
Note that this value is normalized by R here.
hc = reac.calc_property(cea.ENTHALPY, weights, T_reactant)/cea.R
Now we can solve the solve() function:
solver.solve(solution, weights, pc, pi_p, supar=supar, mdot=mdot, iac=False, hc=hc)
Finally, querry the solution variables and print them out:
num_pts = solution.num_pts
T = solution.T
P = solution.P
rho = solution.density
enthalpy = solution.enthalpy
energy = solution.energy
gibbs = solution.gibbs_energy
entropy = solution.entropy
M_1n = solution.M
MW = solution.MW
cp_eq = solution.cp_eq
cp_fr = solution.cp_fr
cv_eq = solution.cv_eq
cv_fr = solution.cv_fr
Mach = solution.Mach
gamma_s = solution.gamma_s
v_sonic = solution.sonic_velocity
ae_at = solution.ae_at
c_star = solution.c_star
Cf = solution.coefficient_of_thrust
Isp = solution.Isp
Isp_vac = solution.Isp_vacuum
print("P, bar ", end=" ")
for i in range(num_pts):
if i == 1: # Skip solution at infinity
continue
if i < num_pts-1:
print("{0:10.3f}".format(P[i]), end=" ")
else:
print("{0:10.3f}".format(P[i]))
print("T, K ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(T[i]), end=" ")
else:
print("{0:10.3f}".format(T[i]))
print("Density, kg/m^3", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(rho[i]), end=" ")
else:
print("{0:10.3f}".format(rho[i]))
print("H, kJ/kg ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.2f}".format(enthalpy[i]), end=" ")
else:
print("{0:10.2f}".format(enthalpy[i]))
print("U, kJ/kg ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.2f}".format(energy[i]), end=" ")
else:
print("{0:10.2f}".format(energy[i]))
print("G, kJ/kg ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.1f}".format(gibbs[i]), end=" ")
else:
print("{0:10.1f}".format(gibbs[i]))
print("S, kJ/kg-K ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(entropy[i]), end=" ")
else:
print("{0:10.3f}".format(entropy[i]))
print("M, (1/n) ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(M_1n[i]), end=" ")
else:
print("{0:10.3f}".format(M_1n[i]))
print("MW ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(MW[i]), end=" ")
else:
print("{0:10.3f}".format(MW[i]))
print("Cp_eq, kJ/kg-K ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(cp_eq[i]), end=" ")
else:
print("{0:10.3f}".format(cp_eq[i]))
print("Cp_fr, kJ/kg-K ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(cp_fr[i]), end=" ")
else:
print("{0:10.3f}".format(cp_fr[i]))
print("Cv_eq, kJ/kg-K ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(cv_eq[i]), end=" ")
else:
print("{0:10.3f}".format(cv_eq[i]))
print("Cv_eq, kJ/kg-K ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(cv_fr[i]), end=" ")
else:
print("{0:10.3f}".format(cv_fr[i]))
print("Gamma_s ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(gamma_s[i]), end=" ")
else:
print("{0:10.3f}".format(gamma_s[i]))
print("Son. vel., m/s ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.2f}".format(v_sonic[i]), end=" ")
else:
print("{0:10.2f}".format(v_sonic[i]))
print("Mach ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(Mach[i]), end=" ")
else:
print("{0:10.3f}".format(Mach[i]))
print()
print("PERFORMANCE PARAMETERS")
print()
print("Ae/At ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(ae_at[i]), end=" ")
else:
print("{0:10.3f}".format(ae_at[i]))
print("C*, m/s ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.2f}".format(c_star[i]), end=" ")
else:
print("{0:10.2f}".format(c_star[i]))
print("Cf ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(Cf[i]), end=" ")
else:
print("{0:10.3f}".format(Cf[i]))
print("Isp, vac., m/s ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(Isp_vac[i]), end=" ")
else:
print("{0:10.3f}".format(Isp_vac[i]))
print("Isp, m/s ", end=" ")
for i in range(num_pts):
if i == 1:
continue
if i < num_pts-1:
print("{0:10.3f}".format(Isp[i]), end=" ")
else:
print("{0:10.3f}".format(Isp[i]))
print()
print()
print("MOLE FRACTIONS")
print("")
trace_species = []
for prod in solution.mole_fractions:
if np.any(solution.mole_fractions[prod] > 5e-6):
print("{0:15s}".format(prod), end=" ")
for j in range(len(solution.mole_fractions[prod])):
if j == 1:
continue
if j < len(solution.mole_fractions[prod])-1:
print("{0:10.5g}".format(solution.mole_fractions[prod][j]), end=" ")
else:
print("{0:10.5g}".format(solution.mole_fractions[prod][j]))
else:
trace_species.append(prod)
print()
print("TRACE SPECIES:")
max_cols = 8
nrows = (len(trace_species) + max_cols - 1) // max_cols
for i in range(nrows):
print(" ".join("{0:15s}".format(trace_species[j]) for j in range(i * max_cols, min((i + 1) * max_cols, len(trace_species)))))
This results in the following output to the terminal:
P, bar 53.317 44.613 28.269 5.332 0.533 0.053 0.189 0.075 0.044
T, K 3383.845 3341.127 3179.574 2595.058 1787.250 1136.019 1469.591 1220.872 1089.804
Density, kg/m^3 2.410 2.044 1.372 0.324 0.047 0.007 0.020 0.010 0.006
H, kJ/kg -1026.05 -1238.93 -2206.45 -5291.52 -8467.22 -10561.95 -9526.82 -10306.49 -10698.76
U, kJ/kg -3238.68 -3421.28 -4266.22 -6937.12 -9592.53 -11277.13 -10452.00 -11075.09 -11384.84
G, kJ/kg -64163.7 -63757.2 -61701.8 -53849.5 -41909.8 -31818.8 -37025.4 -33151.1 -31090.9
S, kJ/kg-K 18.659 18.712 18.712 18.712 18.712 18.712 18.712 18.712 18.712
M, (1/n) 12.716 12.729 12.835 13.112 13.205 13.207 13.207 13.207 13.207
MW 12.716 12.729 12.835 13.112 13.205 13.207 13.207 13.207 13.207
Cp_eq, kJ/kg-K 8.325 8.294 7.580 5.024 3.459 2.978 3.225 3.043 2.943
Cp_fr, kJ/kg-K 3.934 3.926 3.894 3.748 3.414 2.978 3.221 3.043 2.943
Cv_eq, kJ/kg-K 7.130 7.109 6.515 4.279 2.826 2.349 2.595 2.413 2.313
Cv_eq, kJ/kg-K 3.280 3.273 3.246 3.114 2.784 2.349 2.591 2.413 2.313
Gamma_s 1.145 1.144 1.146 1.170 1.224 1.268 1.243 1.261 1.272
Son. vel., m/s 1591.47 1580.26 1536.49 1387.42 1173.46 952.30 1072.24 984.42 934.25
Mach 0.000 0.413 1.000 2.105 3.287 4.586 3.845 4.376 4.708
PERFORMANCE PARAMETERS
Ae/At 0.000 1.581 1.000 2.228 11.537 64.771 25.000 50.000 75.000
C*, m/s 2331.00 2331.00 2331.00 2331.00 2331.00 2331.00 2331.00 2331.00 2331.00
Cf 0.000 0.280 0.659 1.253 1.655 1.874 1.769 1.848 1.887
Isp, vac., m/s 0.000 3997.084 2877.055 3484.187 4149.463 4530.889 4347.670 4486.634 4554.328
Isp, m/s 0.000 652.501 1536.487 2920.774 3857.762 4367.126 4123.290 4308.233 4398.342
MOLE FRACTIONS
H 0.033498 0.032963 0.027157 0.0088902 0.00024165 1.3303e-07 1.5294e-05 5.7879e-07 5.3925e-08
H2 0.29479 0.29453 0.29418 0.29677 0.30037 0.30052 0.30051 0.30052 0.30052
H2O 0.63456 0.63673 0.65176 0.68895 0.69934 0.69948 0.69948 0.69948 0.69948
H2O2 5.6145e-06 4.7924e-06 2.5779e-06 1.2808e-07 6.6294e-11 6.6931e-17 3.5562e-13 9.1896e-16 1.3572e-17
HO2 1.4937e-05 1.3033e-05 6.7146e-06 2.1556e-07 1.5477e-11 1.5329e-19 1.5833e-14 5.339e-18 1.7481e-20
O 0.0020678 0.0019693 0.0012556 9.1657e-05 2.2451e-08 8.1616e-16 4.0804e-11 2.3271e-14 1.0437e-16
O2 0.0017218 0.0016506 0.0010882 8.6583e-05 2.316e-08 9.8565e-16 4.4543e-11 2.721e-14 1.2863e-16
OH 0.033341 0.032143 0.024545 0.0052119 4.1356e-05 2.1439e-09 1.0824e-06 1.4701e-08 6.5803e-10
TRACE SPECIES:
O3 H2O(L) H2O(cr)