Example 1 from RP-1311ΒΆ
Note
The python script for this example is available in the source/bind/python/cea/samples directory of the CEA repository.
Here we describe how to run example 1 from RP-1311 [1] using the Python API. This example is a TP equilibrium problem, with H2 and Air as reactants.
First import the required libraries:
import numpy as np
import cea
Use cea.units for unit conversions as needed.
# Unit conversions are handled with cea.units helpers.
Declare the product and reactnat species names. Currently, the Python API requires species names to be in bytes format, so we use the b"" syntax to create byte strings. Also note that prod_names is optional in general, but in this case, we explicitly define the list of species that we want to be in the final mixture (note for experienced CEA-users: this is akin to the only parameter in the legacy interface).
reac_names = [b"H2", b"Air"]
prod_names = [b"Ar", b"C", b"CO", b"CO2", b"H",
b"H2", b"H2O", b"HNO", b"HO2", b"HNO2",
b"HNO3", b"N", b"NH", b"NO", b"N2",
b"N2O3", b"O", b"O2", b"OH", b"O3"]
Define the thermodynamic states at which we want to solve the equilibrium problem, in SI units.
pressures = cea.units.atm_to_bar(np.array([1.0, 0.1, 0.01]))
temperatures = np.array([3000.0, 2000.0])
Define the amounts of each reactant; in this case, a chemical equivalence ratio chem_eq_ratios is prescribed (\(r_{eq}\) in the RP-1311 [2]). The arrays fuel_moles and oxidant_moles correspond to the reac_names list, and sets the mole fraction of each that is part of the fuel and oxidant mixtures, respecttively. In this case, because we are using one fuel and one oxidizer, these are simply 1.0 to indicate which reactant is the fuel and which is the oxidizer.
fuel_moles = np.array([1.0, 0.0])
oxidant_moles = np.array([0.0, 1.0])
chem_eq_ratios = np.array([1.0, 1.5])
Now having defined all of the relevant inputs to the problem, we can begin creating the required CEA objects, starting with the Mixture.
reac = cea.Mixture(reac_names)
prod = cea.Mixture(prod_names)
Next we instantiate the EqSolver and EqSolution objects.
solver = cea.EqSolver(prod, reactants=reac)
solution = cea.EqSolution(solver)
Next, we convert the chem_eq_ratios to oxidant-to-fuel ratios. This also requires first converting the fuel_moles and oxidant_moles to fuel_weights and oxidant_weights, respectively.
fuel_weights = reac.moles_to_weights(fuel_moles)
oxidant_weights = reac.moles_to_weights(oxidant_moles)
of_ratios = len(chem_eq_ratios)*[0.0]
for i, eqrat in enumerate(chem_eq_ratios):
of_ratios[i] = reac.chem_eq_ratio_to_of_ratio(oxidant_weights,
fuel_weights,
eqrat)
We will now initialize an array to store each of the solution variables for printing the output later.
n = len(chem_eq_ratios)*len(pressures)*len(temperatures)
of_ratio_out = np.zeros(n)
T_out = np.zeros(n)
P_out = np.zeros(n)
rho = np.zeros(n)
volume = np.zeros(n)
enthalpy = np.zeros(n)
energy = np.zeros(n)
gibbs = np.zeros(n)
entropy = np.zeros(n)
molecular_weight_M = np.zeros(n)
molecular_weight_MW = np.zeros(n)
gamma_s = np.zeros(n)
cp_eq = np.zeros(n)
cp_fr = np.zeros(n)
cv_eq = np.zeros(n)
cv_fr = np.zeros(n)
mole_fractions = {}
i = 0
Finally, we can loop through the defined pressures, temperatures, and oxidant-to-fuel ratios to solve the equilibrium problem at each state. We will also retrieve the solution variables and store them in the arrays we just initialized, and convert some units before storing. The key points to note here are:
The
solve()requires a list of reactant weights, which we compute using the of_ratio_to_weights method of thecea.Mixtureclass.The syntax of the
solve()method is solver.solve(solution, cea.TP, temperature, pressure, weights), where weights is the list of reactant weights computed from the oxidant-to-fuel ratio.
for of_ratio in of_ratios:
for p in pressures:
for t in temperatures:
weights = reac.of_ratio_to_weights(oxidant_weights, fuel_weights, of_ratio)
solver.solve(solution, cea.TP, t, p, weights)
# Store the output
of_ratio_out[i] = of_ratio
T_out[i] = t
P_out[i] = cea.units.bar_to_atm(p)
if solution.converged:
rho[i] = solution.density*1.e-3
volume[i] = solution.volume*1.e3
enthalpy[i] = cea.units.joule_to_cal(solution.enthalpy)
energy[i] = cea.units.joule_to_cal(solution.energy)
gibbs[i] = cea.units.joule_to_cal(solution.gibbs_energy)
entropy[i] = cea.units.joule_to_cal(solution.entropy)
molecular_weight_M[i] = solution.M
molecular_weight_MW[i] = solution.MW
gamma_s[i] = solution.gamma_s
cp_eq[i] = cea.units.joule_to_cal(solution.cp_eq)
cp_fr[i] = cea.units.joule_to_cal(solution.cp_fr)
cv_eq[i] = cea.units.joule_to_cal(solution.cv_eq)
cv_fr[i] = cea.units.joule_to_cal(solution.cv_fr)
if i == 0:
for prod in solution.mole_fractions:
mole_fractions[prod] = np.array([solution.mole_fractions[prod]])
else:
for prod in mole_fractions:
mole_fractions[prod] = np.append(mole_fractions[prod], solution.mole_fractions[prod])
i += 1
Finally, print everything out in a formatted manner consistent with the legacy CEA output format.
print("o/f ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3f}".format(of_ratio_out[i]), end=" ")
else:
print("{0:10.3f}".format(of_ratio_out[i]))
print("P, atm ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3f}".format(P_out[i]), end=" ")
else:
print("{0:10.3f}".format(P_out[i]))
print("T, K ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3f}".format(T_out[i]), end=" ")
else:
print("{0:10.3f}".format(T_out[i]))
print("Density, g/cc ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3e}".format(rho[i]), end=" ")
else:
print("{0:10.3e}".format(rho[i]))
print("Volume, cc/g ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3e}".format(volume[i]), end=" ")
else:
print("{0:10.3e}".format(volume[i]))
print("H, cal/g ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3f}".format(enthalpy[i]), end=" ")
else:
print("{0:10.3f}".format(enthalpy[i]))
print("U, cal/g ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3f}".format(energy[i]), end=" ")
else:
print("{0:10.3f}".format(energy[i]))
print("G, cal/g ", end="")
for i in range(n):
if i < n-1:
print("{0:10.1f}".format(gibbs[i]), end=" ")
else:
print("{0:10.1f}".format(gibbs[i]))
print("S, cal/g-K ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3f}".format(entropy[i]), end=" ")
else:
print("{0:10.3f}".format(entropy[i]))
print("M, (1/n) ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3f}".format(molecular_weight_M[i]), end=" ")
else:
print("{0:10.3f}".format(molecular_weight_M[i]))
print("MW ", end="")
for i in range(n):
if i < n-1:
print("{0:10.3f}".format(molecular_weight_MW[i]), end=" ")
else:
print("{0:10.3f}".format(molecular_weight_MW[i]))
print("Gamma_s ", end="")
for i in range(n):
if i < n-1:
print("{0:10.4f}".format(gamma_s[i]), end=" ")
else:
print("{0:10.4f}".format(gamma_s[i]))
print("Cp_eq, cal/g-K ", end="")
for i in range(n):
if i < n-1:
print("{0:10.4f}".format(cp_eq[i]), end=" ")
else:
print("{0:10.4f}".format(cp_eq[i]))
print("Cp_fr, cal/g-K ", end="")
for i in range(n):
if i < n-1:
print("{0:10.4f}".format(cp_fr[i]), end=" ")
else:
print("{0:10.4f}".format(cp_fr[i]))
print("Cv_eq, cal/g-K ", end="")
for i in range(n):
if i < n-1:
print("{0:10.4f}".format(cv_eq[i]), end=" ")
else:
print("{0:10.4f}".format(cv_eq[i]))
print("Cv_fr, cal/g-K ", end="")
for i in range(n):
if i < n-1:
print("{0:10.4f}".format(cv_fr[i]), end=" ")
else:
print("{0:10.4f}".format(cv_fr[i]))
print()
print("MOLE FRACTIONS")
print("")
trace_species = []
for prod in mole_fractions:
if np.any(mole_fractions[prod] > 5e-6):
print("{0:15s}".format(prod), end=" ")
for j in range(n):
if j < n-1:
print("{0:10.5g}".format(mole_fractions[prod][j]), end=" ")
else:
print("{0:10.5g}".format(mole_fractions[prod][j]))
else:
trace_species.append(prod)
print()
print("TRACE SPECIES:")
max_cols = 10
nrows = (len(trace_species) + max_cols - 1) // max_cols
for i in range(nrows):
print(" ".join("{0:10s}".format(trace_species[j]) for j in range(i * max_cols, min((i + 1) * max_cols, len(trace_species)))))
This results in the following output to the terminal:
o/f 34.296 34.296 34.296 34.296 34.296 34.296 22.853 22.853 22.853 22.853 22.853 22.853
P, atm 1.000 1.000 0.100 0.100 0.010 0.010 1.000 1.000 0.100 0.100 0.010 0.010
T, K 3000.000 2000.000 3000.000 2000.000 3000.000 2000.000 3000.000 2000.000 3000.000 2000.000 3000.000 2000.000
Density, g/cc 9.178e-05 1.499e-04 8.085e-06 1.496e-05 6.614e-07 1.487e-06 8.122e-05 1.297e-04 7.116e-06 1.296e-05 5.672e-07 1.293e-06
Volume, cc/g 1.090e+04 6.671e+03 1.237e+05 6.687e+04 1.512e+06 6.723e+05 1.231e+04 7.707e+03 1.405e+05 7.714e+04 1.763e+06 7.735e+05
H, cal/g 663.714 -203.569 1369.546 -191.833 2647.099 -164.346 718.654 -120.698 1550.122 -116.204 3208.235 -101.779
U, cal/g 399.856 -365.131 1070.016 -353.764 2280.923 -327.156 420.475 -307.350 1209.797 -303.012 2781.243 -289.088
G, cal/g -7974.5 -5290.4 -8616.7 -5662.8 -9381.0 -6036.5 -8818.8 -5830.6 -9545.4 -6260.6 -10424.5 -6691.2
S, cal/g-K 2.879 2.543 3.329 2.735 4.009 2.936 3.179 2.855 3.698 3.072 4.544 3.295
M, (1/n) 22.594 24.600 19.903 24.544 16.281 24.412 19.994 21.293 17.518 21.275 13.962 21.219
MW 22.594 24.600 19.903 24.544 16.281 24.412 19.994 21.293 17.518 21.275 13.962 21.219
Gamma_s 1.1312 1.2258 1.1206 1.2026 1.1318 1.1668 1.1337 1.2529 1.1196 1.2389 1.1296 1.2051
Cp_eq, cal/g-K 1.6816 0.4552 3.4398 0.5215 3.7168 0.6858 1.8253 0.4671 4.1929 0.5000 4.9230 0.6077
Cp_fr, cal/g-K 0.4250 0.4008 0.4282 0.4008 0.4368 0.4010 0.4812 0.4520 0.4853 0.4521 0.4968 0.4522
Cv_eq, cal/g-K 1.4371 0.3711 2.8458 0.4330 3.0554 0.5856 1.5585 0.3727 3.4492 0.4034 4.0091 0.5032
Cv_fr, cal/g-K 0.3370 0.3200 0.3284 0.3199 0.3148 0.3196 0.3818 0.3587 0.3719 0.3587 0.3544 0.3586
MOLE FRACTIONS
Ar 0.0070982 0.0077283 0.0062528 0.0077107 0.0051148 0.0076691 0.0061933 0.0065959 0.0054263 0.0065904 0.0043249 0.0065728
CO 0.00017073 1.0365e-05 0.00018417 2.0965e-05 0.00016776 4.081e-05 0.00017519 0.00015634 0.00016627 0.0001561 0.0001428 0.00015539
CO2 7.1077e-05 0.00025289 2.8816e-05 0.00024169 6.4686e-06 0.00022042 3.5772e-05 6.8336e-05 1.8562e-05 6.8384e-05 4.5151e-06 6.8501e-05
H 0.040752 8.9523e-05 0.14289 0.00040886 0.31894 0.0018585 0.06025 0.00062121 0.18236 0.0019603 0.39312 0.0061596
H2 0.067277 0.0030607 0.082718 0.0063841 0.041209 0.013191 0.14706 0.14737 0.13472 0.14676 0.062606 0.1449
H2O 0.2073 0.34207 0.095791 0.33714 0.011761 0.32637 0.22224 0.29508 0.11131 0.2945 0.014651 0.29261
HO2 1.0257e-05 1.0068e-07 5.0804e-06 1.0266e-07 6.887e-07 1.0243e-07 3.6481e-06 2.2423e-10 3.3005e-06 7.1074e-10 5.7072e-07 2.2616e-09
N 1.0577e-05 7.1874e-10 3.1348e-05 2.27e-09 8.9735e-05 7.1582e-09 9.9041e-06 6.6412e-10 2.9248e-05 2.0992e-09 8.2567e-05 6.6293e-09
NO 0.012303 0.00048345 0.013705 0.0007215 0.0096685 0.0010659 0.0056508 8.003e-06 0.0091234 2.5353e-05 0.0072944 8.0572e-05
N2 0.58568 0.64414 0.51448 0.64255 0.42158 0.63891 0.51356 0.54995 0.44786 0.54948 0.35692 0.54799
O 0.015397 2.1253e-05 0.057868 0.00010042 0.14261 0.0004705 0.0075519 3.8075e-07 0.041288 3.816e-06 0.11694 3.8402e-05
O2 0.018761 0.0010234 0.026501 0.0022849 0.016095 0.0050156 0.0045133 3.2847e-07 0.013491 3.2993e-06 0.010821 3.3412e-05
OH 0.045174 0.0011285 0.059534 0.0024353 0.032747 0.0051864 0.032758 0.00014029 0.054207 0.00044369 0.033096 0.001403
TRACE SPECIES:
C HNO HNO2 HNO3 NH N2O3 O3