Example 8 from RP-1311 ====================== .. note:: The python script for this example is available in the `source/bind/python/cea/samples` directory of the CEA repository. Here we describe how to run example 8 from RP-1311 [1]_ using the Python API. This is a rocket problem assuming an infinite-area combustor (IAC), using H\ :sub:`2`\ (L) and O\ :sub:`2`\ (L) as the reactants. First import the required libraries: .. code-block:: python import numpy as np import cea Use :data:`cea.R` inline when normalizing enthalpy. Declare the reactants and set their amounts and initial temperatures. Currently, the Python API requires species names to be in bytes format, so we use the `b""` syntax to create byte strings. The initial reactant temperatures, `T_reactant`, will be used later to compute the chamber enthalpy. The amounts of each are specified through the `fuel_weights`, `oxidant_weights`, and `of_ratio` variables specified here. Setting the `fuel_weights` array equal to `[1.0, 0.0]` means that `H2(L)` constitutes 100\% of the fuel, and similarly, setting the `oxidant_weights` array equal to `[0.0, 1.0]` means that `O2(L)` constitutes 100\% of the oxidant. These values will be used in conjunction later with `of_ratio` to compute the overall weight fraction array of the reactant mixture. .. code-block:: python reac_names = [b"H2(L)", b"O2(L)"] T_reactant = np.array([20.27, 90.17]) # Reactant temperatures (K) fuel_weights = np.array([1.0, 0.0]) oxidant_weights = np.array([0.0, 1.0]) of_ratio = 5.55157 Next, set some states for the rocket analysis. We will pass these values into the :class:`~cea.RocketSolver` later. .. code-block:: python pc = 53.3172 # Chamber pressure (bar) pi_p = [10.0, 100.0, 1000.0] # Pressure ratio subar = [1.58] # Subsonic area ratio supar = [25.0, 50.0, 75.0] # Supersonic area ratio Instantiate the reactant and product :class:`~cea.Mixture` objects. To create the product :class:`~cea.Mixture`, we pass the list of reactant names along with the flag `products_from_reactants=True`, which will return the full set of possible product species. .. code-block:: python reac = cea.Mixture(reac_names) prod = cea.Mixture(reac_names, products_from_reactants=True) Now instantiate the :class:`~cea.RocketSolver` and :class:`~cea.RocketSolution` objects. .. code-block:: python solver = cea.RocketSolver(prod, reactants=reac) solution = cea.RocketSolution(solver) Now we will use the reactant :class:`~cea.Mixture` object to compute the overall weight fraction array of the reactants: .. code-block:: python weights = reac.of_ratio_to_weights(oxidant_weights, fuel_weights, of_ratio) And compute the chamber enthalpy value based on the reactants weights and temperatures. We will pass this in later when we call :meth:`~cea.RocketSolver.solve`. Note that this value is normalized by `R` here. .. code-block:: python hc = reac.calc_property(cea.ENTHALPY, weights, T_reactant)/cea.R Now we can solve the :meth:`~cea.RocketSolver.solve` function: .. code-block:: python solver.solve(solution, weights, pc, pi_p, subar=subar, supar=supar, hc=hc, iac=True) Finally, querry the solution variables and print them out: .. code-block:: python num_pts = solution.num_pts T = solution.T P = solution.P rho = solution.density enthalpy = solution.enthalpy energy = solution.energy gibbs = solution.gibbs_energy entropy = solution.entropy M_1n = solution.M MW = solution.MW cp_eq = solution.cp_eq cp_fr = solution.cp_fr cv_eq = solution.cv_eq cv_fr = solution.cv_fr Mach = solution.Mach gamma_s = solution.gamma_s v_sonic = solution.sonic_velocity ae_at = solution.ae_at c_star = solution.c_star Cf = solution.coefficient_of_thrust Isp = solution.Isp Isp_vac = solution.Isp_vacuum print("P, bar ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(P[i]), end=" ") else: print("{0:10.3f}".format(P[i])) print("T, K ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(T[i]), end=" ") else: print("{0:10.3f}".format(T[i])) print("Density, kg/m^3", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(rho[i]), end=" ") else: print("{0:10.3f}".format(rho[i])) print("H, kJ/kg ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.2f}".format(enthalpy[i]), end=" ") else: print("{0:10.2f}".format(enthalpy[i])) print("U, kJ/kg ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.2f}".format(energy[i]), end=" ") else: print("{0:10.2f}".format(energy[i])) print("G, kJ/kg ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.1f}".format(gibbs[i]), end=" ") else: print("{0:10.1f}".format(gibbs[i])) print("S, kJ/kg-K ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(entropy[i]), end=" ") else: print("{0:10.3f}".format(entropy[i])) print("M, (1/n) ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(M_1n[i]), end=" ") else: print("{0:10.3f}".format(M_1n[i])) print("MW ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(MW[i]), end=" ") else: print("{0:10.3f}".format(MW[i])) print("Cp_eq, kJ/kg-K ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(cp_eq[i]), end=" ") else: print("{0:10.3f}".format(cp_eq[i])) print("Cp_fr, kJ/kg-K ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(cp_fr[i]), end=" ") else: print("{0:10.3f}".format(cp_fr[i])) print("Cv_eq, kJ/kg-K ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(cv_eq[i]), end=" ") else: print("{0:10.3f}".format(cv_eq[i])) print("Cv_eq, kJ/kg-K ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(cv_fr[i]), end=" ") else: print("{0:10.3f}".format(cv_fr[i])) print("Gamma_s ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(gamma_s[i]), end=" ") else: print("{0:10.3f}".format(gamma_s[i])) print("Son. vel., m/s ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.2f}".format(v_sonic[i]), end=" ") else: print("{0:10.2f}".format(v_sonic[i])) print("Mach ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(Mach[i]), end=" ") else: print("{0:10.3f}".format(Mach[i])) print() print("PERFORMANCE PARAMETERS") print() print("Ae/At ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(ae_at[i]), end=" ") else: print("{0:10.3f}".format(ae_at[i])) print("C*, m/s ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.2f}".format(c_star[i]), end=" ") else: print("{0:10.2f}".format(c_star[i])) print("Cf ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.4f}".format(Cf[i]), end=" ") else: print("{0:10.4f}".format(Cf[i])) print("Isp, vac., m/s ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(Isp_vac[i]), end=" ") else: print("{0:10.3f}".format(Isp_vac[i])) print("Isp, m/s ", end=" ") for i in range(num_pts): if i < num_pts-1: print("{0:10.3f}".format(Isp[i]), end=" ") else: print("{0:10.3f}".format(Isp[i])) print() print("MOLE FRACTIONS") print("") trace_species = [] for prod in solution.mole_fractions: if np.any(solution.mole_fractions[prod] > 5e-6): print("{0:15s}".format(prod), end=" ") for j in range(len(solution.mole_fractions[prod])): if j < len(solution.mole_fractions[prod])-1: print("{0:10.5g}".format(solution.mole_fractions[prod][j]), end=" ") else: print("{0:10.5g}".format(solution.mole_fractions[prod][j])) else: trace_species.append(prod) print() print("TRACE SPECIES:") max_cols = 8 nrows = (len(trace_species) + max_cols - 1) // max_cols for i in range(nrows): print(" ".join("{0:15s}".format(trace_species[j]) for j in range(i * max_cols, min((i + 1) * max_cols, len(trace_species))))) This results in the following output to the terminal: .. code-block:: console P, bar 53.317 30.655 5.332 0.533 0.053 48.382 0.205 0.081 0.047 T, K 3383.845 3185.673 2567.340 1759.893 1115.867 3348.687 1468.163 1219.613 1088.640 Density, kg/m^3 2.410 1.486 0.328 0.048 0.008 2.214 0.022 0.011 0.007 H, kJ/kg -1026.05 -2208.65 -5428.75 -8561.51 -10621.81 -1239.65 -9531.43 -10310.32 -10702.19 U, kJ/kg -3238.68 -4271.01 -7055.36 -9669.56 -11324.30 -3425.26 -10455.71 -11078.12 -11387.53 G, kJ/kg -64163.7 -61648.7 -53331.6 -41398.6 -31442.3 -63721.3 -36925.2 -33066.5 -31014.6 S, kJ/kg-K 18.659 18.659 18.659 18.659 18.659 18.659 18.659 18.659 18.659 M, (1/n) 12.716 12.843 13.123 13.206 13.207 12.739 13.207 13.207 13.207 MW 12.716 12.843 13.123 13.206 13.207 12.739 13.207 13.207 13.207 Cp_eq, kJ/kg-K 8.325 7.480 4.880 3.435 2.963 8.182 3.223 3.042 2.942 Cp_fr, kJ/kg-K 3.934 3.895 3.739 3.399 2.963 3.927 3.220 3.042 2.942 Cv_eq, kJ/kg-K 7.130 6.427 4.149 2.803 2.333 7.013 2.594 2.412 2.312 Cv_eq, kJ/kg-K 3.280 3.248 3.106 2.769 2.333 3.275 2.590 2.412 2.312 Gamma_s 1.145 1.147 1.172 1.225 1.270 1.145 1.243 1.261 1.272 Son. vel., m/s 1591.47 1537.92 1380.99 1165.22 944.48 1581.88 1071.77 983.95 933.79 Mach 0.000 1.000 2.149 3.332 4.638 0.413 3.848 4.379 4.711 PERFORMANCE PARAMETERS Ae/At 0.000 1.000 2.350 12.238 68.753 1.580 25.000 50.000 75.000 C*, m/s 2332.34 2332.34 2332.34 2332.34 2332.34 2332.34 2332.34 2332.34 2332.34 Cf 0.0000 0.6594 1.2723 1.6645 1.8783 0.2802 1.7684 1.8476 1.8861 Isp, vac., m/s 0.000 2878.925 3515.549 4167.551 4541.167 3997.593 4348.510 4487.303 4554.913 Isp, m/s 0.000 1537.917 2967.386 3882.127 4380.811 653.592 4124.410 4309.122 4399.121 MOLE FRACTIONS H 0.033498 0.026523 0.0079332 0.00019077 8.6863e-08 0.032259 1.4438e-05 5.4374e-07 5.048e-08 H2 0.29479 0.29432 0.29711 0.3004 0.30052 0.29466 0.30051 0.30052 0.30052 H2O 0.63456 0.6528 0.6903 0.69937 0.69948 0.63794 0.69948 0.69948 0.69948 H2O2 5.6145e-06 2.6541e-06 1.0707e-07 4.5473e-11 3.3916e-17 4.9535e-06 3.4561e-13 8.8625e-16 1.3014e-17 HO2 1.4937e-05 6.7089e-06 1.6718e-07 9.0802e-12 5.8316e-20 1.309e-05 1.4613e-14 4.8736e-18 1.5828e-20 O 0.0020678 0.0012027 7.1141e-05 1.3226e-08 3.1274e-16 0.0018954 3.6204e-11 2.0422e-14 9.0861e-17 O2 0.0017218 0.0010431 6.7407e-05 1.3699e-08 3.8095e-16 0.0015903 3.9534e-11 2.389e-14 1.1204e-16 OH 0.033341 0.024095 0.0045231 3.0655e-05 1.2435e-09 0.031643 1.0169e-06 1.3724e-08 6.115e-10 TRACE SPECIES: O3 H2O(L) H2O(cr) .. [1] McBride, B.J., Gordon, S., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description: Users Manual and Program Description - 2", NASA RP-1311, 1996. [NTRS](https://ntrs.nasa.gov/citations/19960044559)