Example 2 from RP-1311 ======================= .. note:: The python script for this example is available in the `source/bind/python/cea/samples` directory of the CEA repository. Here we describe how to run example 2 from RP-1311 [1]_ using the Python API. This is a TV equilibrium problem, with H\ :sub:`2`\ and Air as reactants, and computes transport properties or the resulting equilibrium mixture. First import the required libraries: .. code-block:: python import numpy as np import cea Use :mod:`cea.units` for unit conversions. Next we define a flag to turn on transport properties; this could also be done in-line later in the code. .. code-block:: python transport = True Declare the product and reactnat species names. Currently, the Python API requires species names to be in bytes format, so we use the `b""` syntax to create byte strings. Also note that `prod_names` is optional in general, but in this case, we explicitly define the list of species that we want to be in the final mixture (note for experienced CEA-users: this is akin to the `only` parameter in the legacy interface). .. code-block:: python reac_names = [b"H2", b"Air"] prod_names = [b"Ar", b"C", b"CO", b"CO2", b"H", b"H2", b"H2O", b"HNO", b"HO2", b"HNO2", b"HNO3", b"N", b"NH", b"NO", b"N2", b"N2O3", b"O", b"O2", b"OH", b"O3"] Define the thermodynamic states at which we want to solve the equilibrium problem, in SI units. .. code-block:: python densities = 1.0e3*np.array([9.1864e-5, 8.0877e-6, 6.6054e-7]) # kg/m^3 temperatures = np.array([3000.0]) Define the amounts of each reactant; in this case, a weight equivalence ratio `phis` is prescribed (:math:`{\phi}` in the RP-1311 [2]_). The arrays `fuel_moles` and `oxidant_moles` correspond to the `reac_names` list, and sets the mole fraction of each that is part of the fuel and oxidant mixtures, respecttively. In this case, because we are using one fuel and one oxidizer, these are simply `1.0` to indicate which reactant is the fuel and which is the oxidizer. .. code-block:: python phis = np.array([1.0]) fuel_moles = np.array([1.0, 0.0]) oxidant_moles = np.array([0.0, 1.0]) Now having defined all of the relevant inputs to the problem, we can begin creating the required CEA objects, starting with the :class:`~cea.Mixture`. .. code-block:: python reac = cea.Mixture(reac_names) prod = cea.Mixture(prod_names) Next we instantiate the :class:`~cea.EqSolver` and :class:`~cea.EqSolution` objects. Note that the `transport` flag is passed at this point during the :class:`~cea.EqSolver` instantiation. .. code-block:: python :emphasize-lines: 1 solver = cea.EqSolver(prod, reactants=reac, transport=transport) solution = cea.EqSolution(solver) Next, we convert the `phis` to oxidant-to-fuel ratios. This also requires first converting the `fuel_moles` and `oxidant_moles` to `fuel_weights` and `oxidant_weights`, respectively. .. code-block:: python fuel_weights = reac.moles_to_weights(fuel_moles) oxidant_weights = reac.moles_to_weights(oxidant_moles) of_ratios = len(phis)*[0.0] for i, phi in enumerate(phis): of_ratios[i] = reac.weight_eq_ratio_to_of_ratio(oxidant_weights, fuel_weights, phi) We will now initialize an array to store each of the solution variables for printing the output later. .. code-block:: python n = len(phis)*len(densities)*len(temperatures) of_ratio_out = np.zeros(n) T_out = np.zeros(n) P_out = np.zeros(n) rho = np.zeros(n) volume = np.zeros(n) enthalpy = np.zeros(n) energy = np.zeros(n) gibbs = np.zeros(n) entropy = np.zeros(n) molecular_weight_M = np.zeros(n) molecular_weight_MW = np.zeros(n) gamma_s = np.zeros(n) cp_eq = np.zeros(n) cp_fr = np.zeros(n) cv_eq = np.zeros(n) cv_fr = np.zeros(n) visc = np.zeros(n) cond_fr = np.zeros(n) cond_eq = np.zeros(n) prandtl_fr = np.zeros(n) prandtl_eq = np.zeros(n) mole_fractions = {} trace_species = [] i = 0 Finally, we can loop through the defined pressures, temperatures, and oxidant-to-fuel ratios to solve the equilibrium problem at each state. We will also retrieve the solution variables and store them in the arrays we just initialized, and convert some units before storing. The key points to note here are: 1. The :meth:`~cea.EqSolver.solve` requires a list of reactant weights, which we compute using the `of_ratio_to_weights` method of the :class:`cea.Mixture` class. 2. The syntax of the :meth:`~cea.EqSolver.solve` method is `solver.solve(solution, cea.TP, temperature, pressure, weights)`, where `weights` is the list of reactant weights computed from the oxidant-to-fuel ratio. .. code-block:: python for of_ratio in of_ratios: for density in densities: for t in temperatures: weights = reac.of_ratio_to_weights(oxidant_weights, fuel_weights, of_ratio) solver.solve(solution, cea.TV, t, 1.0/density, weights) # Store the output of_ratio_out[i] = of_ratio T_out[i] = t if solution.converged: rho[i] = solution.density*1.e-3 P_out[i] = cea.units.bar_to_atm(solution.P) volume[i] = solution.volume*1.e3 enthalpy[i] = cea.units.joule_to_cal(solution.enthalpy) energy[i] = cea.units.joule_to_cal(solution.energy) gibbs[i] = cea.units.joule_to_cal(solution.gibbs_energy) entropy[i] = cea.units.joule_to_cal(solution.entropy) molecular_weight_M[i] = solution.M molecular_weight_MW[i] = solution.MW gamma_s[i] = solution.gamma_s cp_eq[i] = cea.units.joule_to_cal(solution.cp_eq) cp_fr[i] = cea.units.joule_to_cal(solution.cp_fr) cv_eq[i] = cea.units.joule_to_cal(solution.cv_eq) cv_fr[i] = cea.units.joule_to_cal(solution.cv_fr) visc[i] = solution.viscosity cond_fr[i] = cea.units.joule_to_cal(solution.conductivity_fr) cond_eq[i] = cea.units.joule_to_cal(solution.conductivity_eq) prandtl_fr[i] = solution.Pr_fr prandtl_eq[i] = solution.Pr_eq if i == 0: for prod in solution.mole_fractions: mole_fractions[prod] = np.array([solution.mole_fractions[prod]]) else: for prod in mole_fractions: mole_fractions[prod] = np.append(mole_fractions[prod], solution.mole_fractions[prod]) i += 1 Finally, print everything out in a formatted manner consistent with the legacy CEA output format. .. code-block:: python print("o/f ", end="") for i in range(n): if i < n-1: print("{0:10.3f}".format(of_ratio_out[i]), end=" ") else: print("{0:10.3f}".format(of_ratio_out[i])) print("P, atm ", end="") for i in range(n): if i < n-1: print("{0:10.3f}".format(P_out[i]), end=" ") else: print("{0:10.3f}".format(P_out[i])) print("T, K ", end="") for i in range(n): if i < n-1: print("{0:10.3f}".format(T_out[i]), end=" ") else: print("{0:10.3f}".format(T_out[i])) print("Density, g/cc ", end="") for i in range(n): if i < n-1: print("{0:10.3e}".format(rho[i]), end=" ") else: print("{0:10.3e}".format(rho[i])) print("Volume, cc/g ", end="") for i in range(n): if i < n-1: print("{0:10.3e}".format(volume[i]), end=" ") else: print("{0:10.3e}".format(volume[i])) print("H, cal/g ", end="") for i in range(n): if i < n-1: print("{0:10.3f}".format(enthalpy[i]), end=" ") else: print("{0:10.3f}".format(enthalpy[i])) print("U, cal/g ", end="") for i in range(n): if i < n-1: print("{0:10.3f}".format(energy[i]), end=" ") else: print("{0:10.3f}".format(energy[i])) print("G, cal/g ", end="") for i in range(n): if i < n-1: print("{0:10.1f}".format(gibbs[i]), end=" ") else: print("{0:10.1f}".format(gibbs[i])) print("S, cal/g-K ", end="") for i in range(n): if i < n-1: print("{0:10.3f}".format(entropy[i]), end=" ") else: print("{0:10.3f}".format(entropy[i])) print("M, (1/n) ", end="") for i in range(n): if i < n-1: print("{0:10.3f}".format(molecular_weight_M[i]), end=" ") else: print("{0:10.3f}".format(molecular_weight_M[i])) print("MW ", end="") for i in range(n): if i < n-1: print("{0:10.3f}".format(molecular_weight_MW[i]), end=" ") else: print("{0:10.3f}".format(molecular_weight_MW[i])) print("Gamma_s ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(gamma_s[i]), end=" ") else: print("{0:10.4f}".format(gamma_s[i])) print("") print("Transport properties:") print("") print("Viscosity, mP ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(visc[i]), end=" ") else: print("{0:10.4f}".format(visc[i])) print("") print("with equilibrium reaction:") print("") print("Cp, cal/g-K ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(cp_eq[i]), end=" ") else: print("{0:10.4f}".format(cp_eq[i])) print("Cv, cal/g-K ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(cv_eq[i]), end=" ") else: print("{0:10.4f}".format(cv_eq[i])) print("Conductivity ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(cond_eq[i]), end=" ") else: print("{0:10.4f}".format(cond_eq[i])) print("Prandtl number ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(prandtl_eq[i]), end=" ") else: print("{0:10.4f}".format(prandtl_eq[i])) print("") print("with frozen reaction:") print("") print("Cp, cal/g-K ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(cp_fr[i]), end=" ") else: print("{0:10.4f}".format(cp_fr[i])) print("Cv, cal/g-K ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(cv_fr[i]), end=" ") else: print("{0:10.4f}".format(cv_fr[i])) print("Conductivity ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(cond_fr[i]), end=" ") else: print("{0:10.4f}".format(cond_fr[i])) print("Prandtl number ", end="") for i in range(n): if i < n-1: print("{0:10.4f}".format(prandtl_fr[i]), end=" ") else: print("{0:10.4f}".format(prandtl_fr[i])) print() print("MOLE FRACTIONS") print("") trace_species = [] for prod in mole_fractions: if np.any(mole_fractions[prod] > 5e-6): print("{0:15s}".format(prod), end=" ") for j in range(n): if j < n-1: print("{0:10.5g}".format(mole_fractions[prod][j]), end=" ") else: print("{0:10.5g}".format(mole_fractions[prod][j])) else: trace_species.append(prod) print() print("TRACE SPECIES:") max_cols = 10 nrows = (len(trace_species) + max_cols - 1) // max_cols for i in range(nrows): print(" ".join("{0:10s}".format(trace_species[j]) for j in range(i * max_cols, min((i + 1) * max_cols, len(trace_species))))) This results in the following output to the terminal: .. code-block:: console o/f 34.296 34.296 34.296 P, atm 1.001 0.100 0.010 T, K 3000.000 3000.000 3000.000 Density, g/cc 9.186e-05 8.088e-06 6.605e-07 Volume, cc/g 1.089e+04 1.236e+05 1.514e+06 H, cal/g 663.554 1369.409 2647.694 U, cal/g 399.704 1069.887 2281.487 G, cal/g -7974.3 -8616.6 -9381.4 S, cal/g-K 2.879 3.329 4.010 M, (1/n) 22.595 19.904 16.279 MW 22.595 19.904 16.279 Gamma_s 1.1312 1.1206 1.1318 Transport properties: Viscosity, mP 0.9358 0.9401 0.9482 with equilibrium reaction: Cp, cal/g-K 1.6812 3.4395 3.7156 Cv, cal/g-K 1.4368 2.8456 3.0544 Conductivity 4.4411 9.6448 8.8614 Prandtl number 0.3593 0.3377 0.4009 with frozen reaction: Cp, cal/g-K 0.4250 0.4282 0.4368 Cv, cal/g-K 0.3370 0.3284 0.3148 Conductivity 0.6290 0.7265 0.8641 Prandtl number 0.6322 0.5541 0.4793 MOLE FRACTIONS Ar 0.0070984 0.006253 0.0051143 CO 0.00017071 0.00018417 0.00016775 CO2 7.1088e-05 2.8821e-05 6.4627e-06 H 0.040731 0.14287 0.31902 H2 0.067266 0.082719 0.041181 H2O 0.20733 0.095807 0.011743 HO2 1.0258e-05 5.0811e-06 6.8767e-07 N 1.0572e-05 3.1343e-05 8.9783e-05 NO 0.012302 0.013705 0.0096653 N2 0.58569 0.5145 0.42155 O 0.015389 0.05786 0.14265 O2 0.018757 0.026501 0.016086 OH 0.045166 0.059534 0.032727 TRACE SPECIES: C HNO HNO2 HNO3 NH N2O3 O3 .. [1] McBride, B.J., Gordon, S., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description: Users Manual and Program Description - 2", NASA RP-1311, 1996. [NTRS](https://ntrs.nasa.gov/citations/19960044559) .. [2] Gordon, S., McBride, B.J., "Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis", NASA RP-1311, 1994. [NTRS](https://ntrs.nasa.gov/citations/19950013764)