>>> reproj = MtkReProject()
) |
>>> reproj.create_geogrid(40,-120,30,-110,0.25,0.25) (array([[ 40. , 40. , 40. , ..., 40. , 40. , 40. ], [ 39.75, 39.75, 39.75, ..., 39.75, 39.75, 39.75], [ 39.5 , 39.5 , 39.5 , ..., 39.5 , 39.5 , 39.5 ], ..., [ 30.5 , 30.5 , 30.5 , ..., 30.5 , 30.5 , 30.5 ], [ 30.25, 30.25, 30.25, ..., 30.25, 30.25, 30.25], [ 30. , 30. , 30. , ..., 30. , 30. , 30. ]]), array([[-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ], [-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ], [-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ], ..., [-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ], [-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ], [-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ]]))
) |
>>> srcdata = numpy.ones((128,512), dtype=numpy.float32) * 0.04 >>> datashape = srcdata.shape >>> srcmask = numpy.ones(datashape, dtype=numpy.uint8) >>> a = -0.5; >>> regrshape = tuple((float(dimen) * abs(a)) for dimen in datashape) >>> lines = numpy.tile(numpy.linspace(4.1,((10*regrshape[0]) + 4.1), regrshape[1]), (regrshape[0],1)).astype('float32') >>> samples = numpy.tile(numpy.linspace(4.1,((10*regrshape[1]) + 4.1), regrshape[0]), (regrshape[1],1)).transpose().astype('float32') >>> myproj.resample_cubic_convolution(srcdata, srcmask, lines, samples, a ) (array([[ 0. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04], [ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04], ..., [ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04], [ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04], [ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04]], dtype=float32), array([[0, 0, 0, ..., 0, 0, 0], [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], ..., [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]], dtype=int8))
) |
>>> srcdata = numpy.ones((128,512), dtype=numpy.float32) * 20 >>> datashape = srcdata.shape >>> regrshape = tuple( (float(dimen) * 0.5) for dimen in datashape) >>> lines = numpy.tile(numpy.linspace(4.1,((10*regrshape[0]) + 4.1), regrshape[1]), (regrshape[0],1)).astype('float32') >>> samples = numpy.tile(numpy.linspace(4.1,((10*regrshape[1]) + 4.1), regrshape[0]), (regrshape[1],1)).transpose().astype('float32') >>> myproj.resample_nearest_neighbor(srcdata, lines, samples) array([[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.]], dtype=float32)
) |
>>> r = Mtk.MtkRegion(39, 51, 52) >>> mapinfo = r.snap_to_grid(39, 275) >>> (lat, lon) = reproj.create_geogrid(49.0, -113.0, 47.5, -114.0, 0.02, 0.02) >>> reproj.transform_coordinates(mapinfo, lat, lon) (array([[475.7129 , 474.96417, 474.21405, ..., 512.7551 , 512.07776, 511.39905], [483.72412, 482.97504, 482.22458, ..., 520.7843 , 520.1066 , 519.4276 ], [491.73526, 490.98584, 490.23502, ..., 528.8135 , 528.13544, 527.45605], ..., [ -1. , -1. , -1. , ..., -1. , -1. , -1. ], [ -1. , -1. , -1. , ..., -1. , -1. , -1. ], [ -1. , -1. , -1. , ..., -1. , -1. , -1. ]], dtype=float32), array([[313.62213 , 318.89313 , 324.1639 , ..., 39.21427 , 44.49714 , 49.779778], [314.75842 , 320.03152 , 325.30438 , ..., 40.2419 , 45.526855, 50.811584], [315.89478 , 321.16998 , 326.44495 , ..., 41.269634, 46.556675, 51.843494], ..., [ -1. , -1. , -1. , ..., -1. , -1. , -1. ], [ -1. , -1. , -1. , ..., -1. , -1. , -1. ], [ -1. , -1. , -1. , ..., -1. , -1. , -1. ]], dtype=float32))