>>> reproj = MtkReProject()
| ) |
>>> reproj.create_geogrid(40,-120,30,-110,0.25,0.25)
(array([[ 40. , 40. , 40. , ..., 40. , 40. , 40. ],
[ 39.75, 39.75, 39.75, ..., 39.75, 39.75, 39.75],
[ 39.5 , 39.5 , 39.5 , ..., 39.5 , 39.5 , 39.5 ],
...,
[ 30.5 , 30.5 , 30.5 , ..., 30.5 , 30.5 , 30.5 ],
[ 30.25, 30.25, 30.25, ..., 30.25, 30.25, 30.25],
[ 30. , 30. , 30. , ..., 30. , 30. , 30. ]]),
array([[-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ],
[-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ],
[-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ],
...,
[-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ],
[-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ],
[-120. , -119.75, -119.5 , ..., -110.5 , -110.25, -110. ]]))
| ) |
>>> srcdata = numpy.ones((128,512), dtype=numpy.float32) * 0.04
>>> datashape = srcdata.shape
>>> srcmask = numpy.ones(datashape, dtype=numpy.uint8)
>>> a = -0.5;
>>> regrshape = tuple((float(dimen) * abs(a)) for dimen in datashape)
>>> lines = numpy.tile(numpy.linspace(4.1,((10*regrshape[0]) + 4.1), regrshape[1]), (regrshape[0],1)).astype('float32')
>>> samples = numpy.tile(numpy.linspace(4.1,((10*regrshape[1]) + 4.1), regrshape[0]), (regrshape[1],1)).transpose().astype('float32')
>>> myproj.resample_cubic_convolution(srcdata, srcmask, lines, samples, a )
(array([[ 0. , 0. , 0. , ..., 0. , 0. , 0. ],
[ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04],
[ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04],
...,
[ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04],
[ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04],
[ 0.04, 0.04, 0.04, ..., 0.04, 0.04, 0.04]], dtype=float32),
array([[0, 0, 0, ..., 0, 0, 0],
[1, 1, 1, ..., 1, 1, 1],
[1, 1, 1, ..., 1, 1, 1],
...,
[1, 1, 1, ..., 1, 1, 1],
[1, 1, 1, ..., 1, 1, 1],
[1, 1, 1, ..., 1, 1, 1]], dtype=int8))
| ) |
>>> srcdata = numpy.ones((128,512), dtype=numpy.float32) * 20
>>> datashape = srcdata.shape
>>> regrshape = tuple( (float(dimen) * 0.5) for dimen in datashape)
>>> lines = numpy.tile(numpy.linspace(4.1,((10*regrshape[0]) + 4.1), regrshape[1]), (regrshape[0],1)).astype('float32')
>>> samples = numpy.tile(numpy.linspace(4.1,((10*regrshape[1]) + 4.1), regrshape[0]), (regrshape[1],1)).transpose().astype('float32')
>>> myproj.resample_nearest_neighbor(srcdata, lines, samples)
array([[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.]], dtype=float32)
| ) |
>>> r = Mtk.MtkRegion(39, 51, 52)
>>> mapinfo = r.snap_to_grid(39, 275)
>>> (lat, lon) = reproj.create_geogrid(49.0, -113.0, 47.5, -114.0, 0.02, 0.02)
>>> reproj.transform_coordinates(mapinfo, lat, lon)
(array([[475.7129 , 474.96417, 474.21405, ..., 512.7551 , 512.07776,
511.39905],
[483.72412, 482.97504, 482.22458, ..., 520.7843 , 520.1066 ,
519.4276 ],
[491.73526, 490.98584, 490.23502, ..., 528.8135 , 528.13544,
527.45605],
...,
[ -1. , -1. , -1. , ..., -1. , -1. ,
-1. ],
[ -1. , -1. , -1. , ..., -1. , -1. ,
-1. ],
[ -1. , -1. , -1. , ..., -1. , -1. ,
-1. ]], dtype=float32), array([[313.62213 , 318.89313 , 324.1639 , ..., 39.21427 , 44.49714 ,
49.779778],
[314.75842 , 320.03152 , 325.30438 , ..., 40.2419 , 45.526855,
50.811584],
[315.89478 , 321.16998 , 326.44495 , ..., 41.269634, 46.556675,
51.843494],
...,
[ -1. , -1. , -1. , ..., -1. , -1. ,
-1. ],
[ -1. , -1. , -1. , ..., -1. , -1. ,
-1. ],
[ -1. , -1. , -1. , ..., -1. , -1. ,
-1. ]], dtype=float32))